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Abstract 
In this paper we propose a mathematical model for multicriteria decision prob-

lems with alternatives which may change their properties in a direct response to external 
actions. We assume that the change of attributes may be controlled by the decision-
maker taking into account that an improvement of the criteria values bears certain cost. 
Thus we get a bi-level multicriteria optimisation problem: an optimal allocation of re-
sources at the lower level, and finding the related nondominated outputs surpassing  
a reference point q at the higher level. A concrete problem of this type, motivated by 
technological, ecological and socio-economical applications, will be discussed in more 
detail, namely optimising the structure of a finite population X by assuring that after  
a fixed time T a maximal number of its elements is characterised by nondominated val-
ues of criteria. Assuming that X consists of N elements, the solution to this problem is 
equivalent to solving in parallel N discrete dynamic programming problems sharing the 
same resources. 
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INTRODUCTION 

 
Real-life decision-making is a dynamic process, even if time is not ex-

pressed explicitly in the usually simplified mathematical problem formulation.  
Applying standard static methods of multicriteria decision-making one as-

sumes that the alternatives are characterised by fixed attributes, whereas the 
main difficulty consists in finding and accepting the nondominated compromise 
values. In dynamical multicriteria decision models based on optimal control the 
evolution of criteria values is described over certain interval of time, however, 
usually only the values of criteria evaluated a posteriori at the end of the control 
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period are taken into account for the decision-making purposes. At last, some 
dynamical programming and trajectory optimisation models allow to consider 
the intermediate criteria values, but the control principle consists rather in 
switching between alternatives than in changing their properties.  

Therefore there exists a need for appropriate mathematical models for the 
decision problems with alternatives which may change their properties as a di-
rect response to the external actions. As an example of such problem may serve 
e.g. the situation where the crew is to be completed from among a set of candi-
dates based on several criteria related to the knowledge, abilities etc., and the 
selection committee considers for each non-perfect candidate a possibility of 
investing some amount for the additional education, internal training, etc. to 
achieve the desired virtues after a period of time. To apply a quantitative analysis 
method, in the above example one has to evaluate the estimates of cost and dura-
tion of the additional training, as well as to elaborate a model of evolution of the 
attributes. Another type of problems, which may be treated within the framework 
here proposed are investment problems, where the initial decision determines the 
scope of future actions. An example of a problem of this kind, referring to the 
choice of the computer system, is shown in Sec.3.  

In this paper we propose a family of such models which may be regarded 
as a generalisation of discrete choice methods to the situations where the time 
evolution plays an essential role. The changes of the values of criteria may occur 
spontaneously, as well as they may be systematically influenced by the decision-
maker. It will also be assumed that the decision-maker's actions resulting in  
a desired improvement of the criteria values may bear certain cost and may not 
be immediate, i.e. the lapse of time necessary to realize the desired change may 
be considered as an auxiliary criterion. Thus we get a bi-level multicriteria opti-
misation problem consisting of the optimal allocation of resources at a lower 
level, and selecting the related Pareto optimal outputs of the original problem in 
a minimal time at the higher-level. An important feature of this approach is  
a proper description of possible transitions between the attributes of each criteri-
on, which will be accomplished by introducing in Sec.1 so called transition pat-
terns. 

To make the presentation of the above ideas maximal comprehensible, the 
scope of this paper will be confined to the problems with a finite alternative set 
Ω, and the performance criterion F = (F1,...,FN) admitting values from a partially 
ordered finite set V.  

Let Vi := {v i,1 ,vi,2 ,...,v i,c(i)} denote the set of values of the criterion Fi or-
dered from the least to the most preferred one by an order “pI”. Then V is the 
Cartesian product of Vi, i.e. V = V1*...*V N with the coordinate-wise partial or-
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der “p”. The changes of values of F for a fixed ω∈Ω are results of the control 
actions u(t)∈U for t from a discrete time interval [t0,T]: 

 

((F1(τ),…,FN(τ)): Ω → V) → opt, for a τ∈[t0 ,T] 
F(t+1)(ω)= φ(F(t)(ω),u(t),t) for each ω∈Ω, t∈ [t ,T-1] 

 

The optimality principle “opt” in (1) should model adequately the decision 
situation concerned. As a representative example, in Sec. 2 we will investigate  
a reference point problem which may be formulated as:  

 

“(F1 (τ),…,F N(τ))(ω) is Pareto-optimal in F(τ)(Ω) and exceeds given q∈V for 
the minimal τ∈ [t0,T] and at a minimal cost of control”. 

 

The triple (Ω,F, φ) will be called the decision process.  
A control u(t) will be identified with a transition (vi→ vj) on the time in-

terval (t,t+1], which is the result of an external action undertaken by the supervi-
sor of the decision process. Besides of controlled transitions we will distinguish 
the deterministic uncontrolled ones which may not be influenced, as e.g. passing 
to the following age classes, random transitions occurring spontaneously, and 
non-admissible transitions. The classes of controllable and random transitions 
need not be disjoint, although in this paper we will be concerned with determin-
istic control only. Thus, the evolution of attributes may be modelled in a manner 
similar to the discrete-event systems described in [8], whereby the values of F 
play the role of system's states.  

Since the set of alternatives Ω, the set of values of criteria V, and time are 
all discrete, such decision processes will be called a D-D-D-system. The particu-
lar relevance of D-D-D-systems consists in the fact that they constitute a natural 
extension of the discrete choice and outranking methods. Moreover, there exist 
close relations to the multicriteria optimal stopping problem, and to the 
multicriteria problems with variable constraints described in [7; 2]. In the final 
section we will provide several illustrative examples and point out the further 
research problems related to D-D-D-systems.  

After a suitable discretisation of the criteria values, the solution methods 
here presented may also be used for the discrete-continuous processes (D-D-C), 
where merely the criteria values are arbitrary real numbers. The analysis of con-
tinuous processes (D-C-C or C-C-C) can in most cases be accomplished within 
the framework of the multicriteria optimal control problems with the criteria 
included in the state-space vector. 
 
 

 

(1) 
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1. EVOLUTION OF ATTRIBUTES: THE TRANSITION  
AND COST PATTERNS  

 
Even under the above simplified assumptions the number N of the admis-

sible criteria values may be very large. However, the task of supplying all neces-
sary information concerning the transitions between the values of F might be 
considerably simplified if it were possible to find a convenient description of the 
transfer function φ, and to identify the non-admissible transitions before starting 
the numerical solution process. A further reason for introducing here the transi-
tion and cost patterns is to reduce the computational complexity of the general 
problem by decomposing it into several subproblems, each one of them referring 
to the single criterion Fi, i = 1,..N. This would be possible if the characterisation 
of transitions between the values of (F1,...FN), including their admissibility, could 
be derived from the properties of the single criteria, F1(t) through FN(t), consid-
ered separately. Below we will show that this goal can be achieved under some 
additional assumptions concerning the set Ω and the criterion F.  

Let us fix the moment of time t∈ [t0,T] and let Vi: = {vi,1,vi,2,...vi,(c(i)}denote 
the set of values of the criterion Fi ordered from the least to the most preferred 
one. If we know which transitions between the values of the criterion F for an 
ω∈Ω are at all possible on the time interval (t,t+1], we could define for Fi and ω 
the transition pattern as a quadratic 0-1 matrix  
 

P(Fi )(ω) = [pi
jk (ω)] 

 

with the following coefficients: 
 

pi
jk (ω) = {1 iff ω∈Ω may change its classification in one time step from j-th  

to the k-th attribute of Fi  
0 otherwise} (2) 
for j,k=1,..c(i), i = 1,..N 

 

Observe that the dimension of P(Fi )(ω) equals to the number of elements of 
Vi , c(i), and its columns indicate the admissible transitions from an appropriate 
fixed starting value of F. Remark that to each transition pattern P(Fi ) one can associ-
ate the digraph G(Fi ) such that P(Fi) is its structural matrix. In general, the transition 
patterns may vary on the interval [t 0,T], being thus functions of both, ω and t.  

Transitions from v to w on the time interval (s,t] may be regarded as pairs 
(v,w) and will be denoted by v->w. By a superposition of the transitions ξ1:= v1→v2 
on the interval (t1,t2], and ξ2:= v2 →v3 on the interval (t2, t3] we will mean the transi-
tionξ:=v1→v3 on (t1,t3], and denote it by ξ = ξ1 °ξ2.  
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Suppose now that v1 = (v11,v12). By the composition of the transitions  
ξ1:= v11→v2 on (t1,t2] and ξ2:= v12→v3 on the same interval (t1,t 2], we will mean 
the transition v1 → (v2 ,v3) on (t1, t2]. To denote compositions we will use the 
notation ξ1 c ξ2.  
 

Let  
 

ξ1:= (v11 ,v12 )→(v2, v12 ) and ξ2 := (v 11 ,v 12 )→(v11 ,v3) 
 

Then, formally, ξ 1°ξ 2  = ξ1 c ξ2, the diversity between composition and 
superposition being expressed by the associated time intervals. Observe that the 
superpositions and compositions describe sequential and parallel processing of 
transitions, respectively. By definition, the compositions are always admissible 
in one time step, the superpositions may, but need not necessarily have this 
property. To assure a minimal number of non-zero coefficients in P(F)( ω,t), it is 
convenient to include in the transition patterns only the transitions which may 
not be represented as compositions of other admissible transitions.  

Transitions lasting several time steps may often be represented as super-
position of one-step transitions. If it is not so, they can still be considered within 
the same framework by introducing the intermediate or wait values of F. This 
question will be considered in more detail further in this section. 

Now we will introduce several properties of the decision process (Ω,F,φ), 
which will be used in the further analysis of the initial decision-making problem. 
 

Definition 1.1. We will say that the set of alternatives Ω is homogeneous with 
respect to F at the moment t∈ [t0 ,T], iff  
 

                                  ∀1≤i≤N ∀x,y∈Ω : P(Fi )(x) = P(Fj)(y) (3) 
 

If (3) is satisfied for all t∈ [t0 ,T], we will call Ω homogeneous.  
 

If Ω is not homogeneous but handling a separate transition pattern for all 
alternatives would be computationally inefficient then one may consider instead 
the Boolean product of transition patterns for all x∈Ω. Generally, in models of 
real-life discrete dynamical systems the transition patterns depend on discretisa-
tion of time, which should be suitably chosen. Moreover, as we already noted, 
they may depend on time itself. In the sequel we will usually admit the assump-
tion that the decision process (Ω,F,φ) is stationary, according to the following 
definition: 
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Definition 1.2. If for each ω∈Ω and 1≤i≤N, P(F i)(ω) remains constant on the 
whole interval [t0 ,T] then the decision process (Ω,F,φ) will be called stationary.  
 

Observe that the stationarity assumption is equivalent to the fact that the 
function φ from (1) does not depend on time t.  

Another important set of properties concerns the independence of criteria 
F1 ,…,FN.  
 

Definition 1.3. The criteria F1 ,...FN are evolution-independent at x∈Ω and t∈[t0 ,T], 
by definition it means that any transition  
 

F(t)(x):= (v1,i(1) ,...vN,i(N)) → (v1,j(1) ,...vN,j(N)) = F(t+1)(x) 
 

is admissible iff for each 1≤k≤N the transitions vk,i(k)→ vk,j(k) are admissible, i.e. 
iff p i k j k

k
( ), ( ) (x)(t) = 1.  

  

The criteria F1 ,...FN will be called globally evolution independent, or 
simply evolution-independent iff the above holds for all x∈Ω and t∈ [t0 ,T]. 
Roughly speaking, the criteria are evolution independent iff the admissibility of 
transitions between the values of Fk , 1≤k≤N, is not affected by the present val-
ues of all remaining criteria.  
It is easy to observe that the following fact is true : 
 

Proposition 1.1. If the decision process (Ω,F, φ) is homogeneous and stationary, 
and for an x0∈Ω, t∈[t0 ,T], F1 ,...FN are evolution independent at (x0 ,t) then F1 
,...FN are globally evolution independent.  
 

In the sequel we will always assume that the criteria concerned are evolu-
tion independent. 
 

Example 1.1. Suppose that Ω is the population of citizens of a city and one of 
the objectives s is the age scale with the attributes v1 = [0,20], v2 = (20,40], v3 = 
(40,60], and v4 = (60,∞), denoting the age in years of a single individual. If all 
time discretisation steps in the process (1) are less than 20 years, which is usual-
ly the case, then the transition pattern P(s) = [pjk ] is the matrix 

P(s) = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000
1100
0110
0011
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No transitions are controllable, unless we dispose a relativistic vehicle to 
force remaining within the same age class (elements on the main diagonal would 
then correspond to controllable transitions).  

An important feature of the transition patterns for evolution independent 
criteria consists in the fact that it is sufficient to determine the patterns for the 
single criteria only, while the transition patterns for the vector criterion may be 
calculated basing on the following  
 

Proposition 1.2. Assume that the evolution independent optimisation criteria Fi 
and Fj are defined on a homogeneous population Ω with the transition patterns  
 

Pi = [p k,l
(i) ]:= P(Fi)(t) ∈Mc(i),c(i) and Pj = [p m n

j
,

( )  ]:= P(Fj)(t) Mc(j),c(j) 
 

for certain fixed t∈ [t0,T], respectively. Then the transition pattern Pij:= P(Fi, 
Fj)(t) of the vector criterion Fij:= (Fi ,Fj ), is the block matrix  
 

                                     Pij = [p k l
i
,

(( )  Pj ] k l
c i

,
( )
=1  ∈Mc(i)c(j),c(i)c(j) (4) 

 

(the block product of Pi and Pj ), where c(i) and c(j) denote the number of admis-
sible values of the criteria Fi and Fj , respectively. The values of Fij , vkl = (v k

i( )  
,v l

j( )  ), labelling the rows and columns in Pij , are ordered lexicographically with 
the first coordinate more relevant than the second.  
 

Proof: Suppose first that the transitions (vi,k(i) → vi,l(i)) and (vj,k(j)→vj,l(j) ) are both 
admissible, i.e. p k i l i

i
( ), ( )

( )  = 1 and p k j l j
j
( ), ( )

( )  = 1. Then from the evolution independ-

ency assumption (Def. 1.3) it follows that the transition  
 

ξ:= (vi,k(i),vj,k(j))→(vi,l(i),vj,l(j)) 
 

is admissible. According to the construction of Pij (cf. (4)), the element corre-
sponding to ξ  in Pij , p m n

ij
,

( )  with m = k(i)c(j)+k(j) and n = l(i)c(j)+l(j), is the 

(k(j),l(j))-th coefficient of the block p k i l i
i
( ), ( )

( )  Pj , which is equal to 1 since p k i l i
i
( ), ( )

( )  

= 1, and p k i l i
i
( ), ( )

( ) Pj = Pj .  
If at least one from the above simple transitions is non-admissible then 

p k i l i
i
( ), ( )

( ) = 0 or p k j l j
j
( ), ( )

( ) = 0. In the first case the block p k i l i
i
( ), ( )

( ) Pj of Pij contains 

only zero elements, in the second, its (k(j),l(j))-th coefficient, p m n
ij
,

( ) , is equal to 
zero. However, from the definition of the evolution independent criteria it fol-
lows that any transition between values of (Fi ,Fj ) must be represented as a su-
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perposition of simple admissible transitions cannot be admissible, therefore the 
transition ξ corresponding to the zero coefficient p m n

ij
,

( )  is not admissible. 

Now, let us fix a coefficient p m n
ij
,

( )  of Pij. Then there exist 

k1(m,n),l1(m,n)∈[1,c(i)] and k2(m,n),l2(m,n)∈[1,c(j)] such that p mn
ij( )  is the 

(k2(m,n),l2(m,n))-th coefficient of the block p k m n l m n
i
1 1( , ), ( , )

( ) Pj of Pij , i.e. to p m n
ij
,

( )  
there can be associated the transition  
 

(vi,k1(m,n) ,vj,k2(m,n)) → (vi,l1(m,n) ,vi,l2(m,n)) 
 

and p m n
ij
,

( )  determines its admissibility, as shown in the first part of the proof. 

Hence we conclude that the above characterisation of the of Pij as transition pat-
tern (2) for (Fi ,Fj ) is complete. 
 

Corollary 1.1. If the transition patterns of two evolution independent criteria  
s and q, P(s) and P(q), have p(s) and p(q) non-zero elements, respectively, then 
the transition pattern for (s,q), P(s,q) contains at most p(s)p(q) non-zero ele-
ments.  
 

Corollary 1.2. Consequently, the transition patterns for any finite number of 
evolution independent criteria, F1,…,Fn, are sparse block matrices which can be 
constructed making recursively use of Proposition 1.2.  
 

1.1. Assignment of controls and costs to admissible transitions 
 

Let us fix w∈Ω, ω∈Ω, and t∈ [t0,T], and assume that the coefficients of the 
transition pattern P(F)(ω,t) are ordered lexicographically. Then to each admissible 
transition v→w we can associate a control um(t) and its cost J(v,w, ω ,t) := J(um, ω ,t), 
where the integer m:= m(v,w) is the ordinal number of the appropriate control from 
the list U:= {u1,...,uM} responsible for the change from v to w.  

If J(v,w, ω ,t) does not depend on the past transitions then, analogously to 
the transition patterns, for each ω∈Ω, t∈ [t0 ,T], and each criterion Fi, one can 
define the cost pattern J(Fi)( ω,t), as a function associating to each transition vi,k 
→vi,l that is feasible between t and t+1, the cost of applying the control um := 
u(i,k,l, ω ,t) that causes the change from vi,k to vi,l ,  
 

J(Fi ,vi,k ,vi,l , ω ,t):= Ji(um , ω ,t) 
 

Hence, the cost pattern for Fi can be represented as the c(i)*c(i) real ma-
trix defined as follows: 
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J kl
i  (ω,t) := {Ji(u(i,k,l, ω ,t), ω,t) iff vi,k is admissible 

∞ − otherwise 
 

Consequently, the cost pattern for F1 ,...,FN , J(F1 ,..FN )(ω,t), is the 
c(1)...c(N) x c(1)...c(N) real matrix storing the costs of transitions between the 
values of the vector criterion F:= (F1,...FN), i.e. Ji(1),...,i(N), j(1),...,j(N)(t, ω) is the cost 
of changing the value (v1,i(1) ,...,vN,i(N)) of F to (v1,j(1),...vN,j(N) ), or it is undefined 
iff such transition is non-admissible. Hence it follows that the structure of the 
cost patterns is closely related to the transitions patterns whereby only those 
coefficients of J which correspond to a “1” in P are finite. Thus, in a machine 
implementation of the above decision process, the transition patterns may serve 
as addresses of those elements of J(F1 ,..FN ) which has to be stored in the 
memory. Moreover, observe that the zero coefficients of J correspond usually to 
non-controllable transitions. 

For the evolution-independent criteria F1 ,...FN an important role is played 
by the following condition: 
 
Definition 1.4. The cost function J(F1 ,..FN ) satisfies the cost-additivity condi-
tion iff for any ω∈Ω, t∈ [t0 ,T], the cost of any admissible transition v->w, 
where v:= (v1,i(1),...vN,i(N) ) and w:= (v1,j(1),...vN,j(N)), is the sum of changing the 
single criteria values, i.e.: 
 

J(v,w, ω ,t) = 
k

N

=
∑

1

J(vk,i(k),vk,j(k), ω,t) 

 

The above condition lets us consider each transition as a composition of 
simple transitions during the computation of the optimal improvement strategy 
for the values of F. This, in turn, allows to omit the operations on J(F), using 
instead J(Fi), for I = 1,…,N. 
 
1.2. Handling the transitions distributed over time 
 

Let us start this subsection from the following definition : 
 

Definition 1.5. A transition  v:= (v1,k(1),...vN,k(N))→ (v1,l(1),...vN,l(N)), which: 
(i) cannot be represented as a superposition or composition of other admissible 
transitions,  
(ii) may be realised after θ, θ>1, time units at the soonest,  
(iii) while realising v, F does not admit any other admissible values,  
will be called irreducible.  

 
(6) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(7) 
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To consider the irreducible transitions within the uniform decision model, 
one can proceed as follows:  
 

Algorithm 1.1. 
Repeat for all irreducible transitions v with the realisation time θ:=θ (v): 
 

Case 1: 
If k(j) = l(j) for jî{1,...N}\{i} then 
 

Step 1.1. Define the wait values vi,k,1 ,...vi,k, θ -1 and attach them to Vi .  
Set Vi := Vi ∪{vi,k,1 ,...vi,k, θ -1}. 
Step 1.2. Order the wait values in any way, according to their real-life interpreta-
tion, but without affecting the existing partial order  “pI”, i.e.,  
 if vk(i)pi vl(i) , or vl(i) pi vk(i) then vk(i) pi vi,k,1 pi ...pi vi,k, θ -1 pi vl(i) , or  
 vl(i) pi vi,k, θ -1 pi ...pi vi,k,1 pi vl(i) , respectively.  
Step 1.3. Update the transition pattern P(Fi ), respectively.  
If n is the last irreducible transition STOP else proceed with the next v.  
 

In particular, one proceeds in this manner in a single-criteria model with 
the objective Fi if a transition from vj,k to vi,l is irreducible.  
 

Case 2: 
If v:= (v1,(k(1) ,...,vN,k(N)), w:= (v1,l(1) ,...,vN,l(N) ), v:=(v→w), and k(i)≠ l(i) for at 
least two different values of i∈{1,...N}, then  
 

Step 2.1. Represent the transition v:= (vi,k → vj,l ) in the form  
 

                                                    v = v 1i o…o v iρ (8) 
 

where v ij is an admissible transition or a non-reducible simple transition, taking 
into account as far as possible the real-life behaviour of the system during the 
transition.  
If the representation in form (8) is impossible go to Step 2.3. 
Step 2.2. Perform for each irreducible simple transition the Steps 1.1-1.3  from 
the Case 1.  
If v is the last irreducible transition STOP else proceed with the next v. 
Step 2.3. Introduce the wait values v v,1,...v v ,θ-1 , directly as elements of  V, 
similarly as in the Steps 1.1-1.2, but do not associate them with any Vi. 
If n is the last irreducible transition STOP, else proceed with the next v.  
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Observe that in the case dealt with in the Step 2.3, the criteria F1 ,...FN are 
not evolution-independent and the further analysis of the problem cannot be 
based only on the simple transition and cost patterns P(Fi ).  

Same intermediate values may be shared by different irreducible 
transitions, and one can show that a minimal set of such values may be found. 
 
 
2. A NEW CLASS OF MULTICRITERIA DECISION-MAKING 

PROBLEMS 
 

As an example of decision models applying the above sketched family of 
quantitative structures, we will discuss in more detail the following basic prob-
lem:  
 

Problem 2.1. Find the alternative ω∈Ω and an optimal allocation of resources 
u(1),...,u(τ), to achieve or surpass by the value of F(τ)(ω), in the minimal time τ 
and at minimal cost, one of the reference points q∈θ defined in the space of 
criteria values.  
 

In a more rigorous setting, let Ω be the finite set of admissible alternatives 
at time t0 := 1, and F1 ,..FN the criteria functions defined on Ω with values in the 
discrete sets Vi with the partial order “pI” for I = 1,..N. Similarly as in the previ-
ous sections denote by F the vector criterion F:= (F1 ,..FN ), F: Ω → V, valued in 
the Cartesian product V:= V *...*V with the coordinatewise partial order “p”. 
For a fixed ω∈Ω, the values of criteria on w may vary according to (1), i.e.  
 

                            F(t+1)(ω) = φ(F(t)(ω),u(t),t), for t∈ [t0,T-1]   
 

Our task consists in finding an ω∈Ω, a τ∈ [t0,T], and a sequence of con-
trols u(t0),...,u(τ), so that : 
 
(i) ((F1(t0),..FN(t0))(ω) is nondominated in V and  
 

                                               ((F1(τ),..FN(τ))(ω) p q  (9) 
 

for certain reference point q∈θ;  
(ii) τ with the property (9) is minimal in [t0,T] for a fixed ω; such value will be 
denoted τ (ω); 
(iii)  

t t0≤ ≤
∑
τ ω( )

J(u(t), ω,t)  is minimal on the set Λ defined as follows: 
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          Λ:= 
w∈Ω
U {w}*{y∈US : τ (w) and F(τ (w))(w) satisfy (i) and (ii)}        (10) 

 

where s:= τ (w)-t0 , and y:= (u(t0 ),...,u(τ (w))) 
 

Observe that, according to (1), F(τ (w))(w) and τ (w) are indirect func-
tions of y. The minimal value of (iii) on Λ will be denoted by Jmin (ω).  
(iv) ((F1 (τ (ω)),..FN (τ (ω)))(ω),τ (ω), Jmin (ω)) is nondominated in the set  VxIR2 
with the coordinatewise partial order. 
  

The general Problem 2.1 consists of two tasks : finding an optimal alterna-
tive w, and a sequence of controls y assuring the achievement of q at a minimal 
cost. Each alternative ω∈Ω is characterised by the minimal time τ (ω) and the 
minimal cost Jmin(ω) of achieving or surpassing q. Consequently, if for each 
ω∈Ω one knows these minimal parameters, then the final choice of ω is a 
bicriteria trade-off between the cost and time, which can be made using one of 
well-known interactive decision-making methods applied for bicriteria prob-
lems.  
We will present a solution to the above problem for the decision processes satis-
fying the following assumptions:  
(i) the decision process (Ω,F,φ) is stationary and homogeneous; 
(ii) the criteria F are evolution independent;  
(iii) all transitions between the values of F are deterministic;  
(iv) the costs of transitions satisfy the cost-additivity condition;  
(v) the reference set Q⊂V can be represented in the form Q:= {p∈V: ppq} for 
certain q∈V. 

As the first step of the solution, below we will show how can one deter-
mine τ (ω) and Jmin(ω) for a fixed ω. 
 
2.1. Solving single-object evolution problems 
 

Let us admit all above assumptions (i)-(iv), let us fix an ω∈Ω, and let f0 := 
F(t0 )(ω). Further, let us consider a directed network G=(V,E), where the nodes V 
can be identified with the set V= V1 x...VN of potential values of F, while the 
edges e∈E⊂V2 are determined by the transition patterns P1 ,...,PN, Pi := P(Fi ) 
( ω), for i = 1,..N, in the following way:  
 

e = (f,g) ∈E ⇔ f≠g and∃! j∈{1,..N} fi = gifor i∈{1,..N}\{j} and 
Pj(fj,gj) = 1 or f = g and ∀ i∈{1,..N} Pi(fi,gi) = 1 

 

(11) 
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Thus, the edges of G correspond to the simple transitions between the val-
ues of F or may be loops. Additionally, the edges of G are equipped with quanti-
tative labels describing the time θ i and the cost of transition Ji, and qualitative 
labels ci indicating whether the corresponding transition is forced or controllable. 
Hence, the following observation is straightforward : 
 
Proposition 2.1. The transition between two values of criteria, f and g, is possi-
ble iff the nodes corresponding to f and g in G can be connected by a path.   
 

As a corollary from Prop. 2.2 we get  
 

Proposition 2.2. The graph G is the Cartesian product of graphs G1,...GN, which 
correspond to the single criteria F1,...FN and their transition patterns P1,...PN, 
respectively. Its structural matrix is given as the block product of P1,...PN, P1,...,N . 
 

Hence it follows 
 

Theorem 2.1. The solution to the Problem 2.1 for a single alternative x∈Ω can 
be found as a bicriteria shortest path in G between f0 and the reference set Q:= 
{v∈V : q{v}.  
 

The solution algorithm which can be derived from the above Prop. 2.1. 
and 2.2 and Thm. 2.1 may be presented as follows: 
 
Algorithm 2.1. 
The input data:  
The transition and cost patterns for F1 ,...FN , P1 ,...PN , and J1 ,...JN , respectively.  
The time horizon T, the starting value f0 , the reference point q∈V, the reference 
set Q. 
Step 1. Augment the transition patterns by the time-distributed transitions, ap-
plying the procedure presented in Sec. 1.3. 
Step 2. Check whether the criteria are evolution independent.  
If yes : 
− construct the network G using the Prop. 2.2 and 2.2; 
otherwise : 
− set manually all edges of G. 
Step 3. Check whether it exists a path joining f0 and q, or any other p∈Q  
 (i.e. check whether Q is attainable from f0). 
If not, return to the communication shell to let the decision-maker, define new 
reference point or to undertake another modification of the decision-maker’s 
preference structure.  
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Step 4. Determine the set D containing all bicriteria shortest paths between  
f 0and all p∈Q, using the bicriteria shortest path algorithm. Find the set of 
nondominated points of D, P(D). 
Step 5. Select a compromise strategy from P(D) using any bicriteria trade-off 
procedure. 
 
2.2. The selection problem from among multiple evolving 

alternatives 
  

In the present setting we assume that at the moment t0 the decision-maker 
should choose that alternative ω0∈Ω which gives the best chances to be im-
proved till the time T so as it were not worse than q. After simulating the evolu-
tion of F(t)(ω) over time t∈ [t0,T], one chooses ω 0 , which will be called pro-
spective alternative, and starts investing in its development, by undertaking the 
actions u(t0),...u(T-1), without taking care what happens with all remaining alter-
natives. This solution procedure implies the following : 
 

Theorem 2.2. To select the prospective alternative and the best strategy in Prob-
lem 2.1 for stationary homogeneous processes with evolution independent crite-
ria, it is necessary to solve the simultaneous bicriteria shortest path problem for 
the set of starting points V0:={f∈V:f = F(t0)(ω) for all ω ∈Ω } and Q as the set 
of terminal points.  
 

As the simultaneous shortest path algorithm one can apply a combination 
of the well-known Dijkstra algorithm and the bicriteria shortest path method (cf. 
e.g. Henig, 1985ab).  
 

The above presented procedure will be illustrated by the following example. 
 

Example 2.1. The choice of a computer system. 
Suppose that a company is offered k different computer systems, each of them 
satisfies its present needs. The computer differ in price, reliability, service quali-
ty, and technical characteristics such as the processor type and its clock speed, 
RAM, hard disk capacity and average access time, and a possibility of attaching 
additional equipment and peripherals like 3D video accelerators, sensors, or 
control devices. All above characteristics (except reliability and, perhaps, price) 
may be regarded as performance criteria F1,...,FN with discrete attribute sets. 
Assume that from the technical and financial purposes the buyer decides to do 
not buy the full system configuration at once, but prefers to extend it successive-
ly according to the future needs. Thus the choice of a system at time t0 should 
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not be made taking into account just the values of F(t0), but one should apply a 
model of the future acquisition process within the decision process. According to 
the scheme presented in this paper, a system configuration would be modelled as 
a node in the graph G, while to an extension of the system would correspond an 
edge labelled by the expected price of this system extension. The final objective 
may consist in getting a fully configured and ready-to-use system at time T at 
possibly minimal price. The “full configuration” mentioned may be interpreted 
as a reference point in the sense of Algorithm 2.1 which allows to apply the solu-
tion methods specified in Thms. 3.1 and 2.2 and the Algorithms 1.1 and 2.1.  
 

Finally, let us discuss the solution methods for decision processes which 
do not satisfy the stationarity, homogeneity, or evolution independence assump-
tions.  
 

(i) For non-stationary homogeneous processes the graph G will be a function of 
time t. To solve the Problem 2.1 one has to apply a bicriteria shortest path algo-
rithm for variable-structure networks [8]. 
 

(ii) If the decision process is not homogeneous, one cannot apply the simultane-
ous shortest path algorithm for all alternatives ω∈Ω in G, since the structure of 
the graph G depends on ω. A solution to the Problem 2.1 may be found by solv-
ing the single evolution problem described in Sec. 2.1 for each graph G(ω), and 
aggregate the solutions as in Step 4 of Algorithm 2.1.  
 

(iii) If the criteria are not evolution independent then the edges of the graph G 
may not be associated to any combination of edges in the graphs G1,...,GN. Man-
ual editing of the transition pattern P1,...N is required.  
 

(iv) Processes which are neither homogeneous nor stationary, nor the criteria are 
evolution independent may be analysed applying simultaneously the appropriate 
combination of procedures outlined in (i) and (ii). 
 
 
3. OPTIMISING THE POPULATION STRUCTURE 
 

The above presented framework may be applied to solve a variety of deci-
sion problems. Here, we will formulate the problem of optimising the structure 
of a finite population Ω by assuring that after a fixed time T a maximal number 
of elements of Ω is characterised by nondominated values of criteria.  
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We assume that the elements of a finite population Ω are classified ac-
cording to N ordered classification criteria F1,...FN. Each element ω∈Ω may pass 
to another class on the time interval [t,t+1] if according to (1) a control 
uα(t)∈U(t) has been applied to ωα. All transitions can be described by M:= #Ω 
equations of type (1) sharing the same resources:  
 

                                        
1≤ ≤
∑
α M

 bα(t) J(uα (t), ω α, t) ≤ut  (12) 

 

where bα (t)≥ 0 for all α. Let us note that the case bα (t):= 1/xti with  
 

                                        x:= #{ω∈Ω: F(t)(w) = F(t)(ω)}  
 

corresponds to the situation where the same control u(t) acts simultaneously on 
all elements of Ω characterised by the same values of criteria.  
 

At the macroscopic level, the evolution of Ω may be described by the fol-
lowing discrete-time controlled dynamical system: 
 

xt+1 = At xt + Bt wt + ηt 
zt+1 = Ctxt + Dtwt + ςt 

 

for t=t0,...,T-1, subject to the constraints  
 

t t T0≤ ≤

∑ (ut + wt) ≤ ξ(t0,T) 

 

where xt, wt, and zt are the state, macroscopic control, and observation vectors, 
respectively, At, Bt, Ct, and Dt are real matrices, and ηt and ζt are random factors 
perturbing the growth/migration and observation processes for t = t0,..T. The 
matrices At and Bt may be derived by aggregating the equations (1) for all ω∈Ω 
and t∈ [t0,T]. The macroscopic controls wt allow an “external” migration by 
attaching to (or removing from) Ω elements independently from the “internal” 
transitions controlled at the lower level (1), and may bear certain additional 
costs.  

The state vectors xt = (x1t,...,xnt) contain the numbers of elements of Ω 
characterised by the same values of F1,...FN, for t = t0,...T (cf. Skulimowski and 
Schmid, 1992). Thus, there is a one-to-one correspondence I between the indices 
of the state variables and the elements of V, so for each t∈ [t0,T] one may order 
the state variables x1t,...,xnt by the partial order generated from V. The values of F 
corresponding to the state variables are called the interpretation vector (cf. the 
above quoted paper of Skulimowski and Schmid) and denoted by I(F,xt). Assum-

 

(13) 
 
 
 

(14) 
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ing that a population Ω is characterised by certain distribution of attributes at an 
initial moment t0 represented by the state vector x0:= x(t0), the aim of control is 
to achieve an optimal distribution of elements of Ω at time T, using for that  
a minimal quantity of resources represented by ut and wt. Below we propose two 
of a variety of possible optimisation problem statements. According to an initial 
remark, the first one of them is related to the nondominated values of F.  
 

Let  
 

K:= {v∈V : ∃ ω∈Ω  such that v= F(T)(ω)} 
 
and let P(K) be the set of nondominated elements of K. Denote by Π(K) the set 
of nondominated indices of the corresponding state variables, i.e. Π(K):= I-

1(P(K)). By definition, the relative population structure will be optimal iff  
 

                                    ( ∑
Π∈ )(Tj

xTj) / (
1≤ ≤
∑

k T

xTj) is maximal  (15) 

 

                                          
t t T0≤ ≤

∑ (qtut + rtwt)  is minimal (16) 

and 
                                                    m0 ≤ 

1≤ ≤
∑

k n

xTk ≤ m1 (17) 
 

where qt and rt are positive real coefficients. 
 

The above problem formulation may have a ecological, sociological or 
economical motivation, namely, assuming that a population Ω remains stable if 
under a classification F a maximal number of its members cannot get in touch 
with another individuals which are better (in the partial order in V) than them-
selves in all relevant aspects (represented as the criteria F1,...FN). In this setting, 
it is less important what is the shape of K and where it is situated at time T.  
 

Introducing a loss function ψ:VxV→ IR+, which is right strictly order in-
creasing, i.e.  
 

v1pv2, v2 pv3, and v1≠ v3 ⇒ψ (v1 ,v2 )≤ ψ (v1 ,v3 ) 
 

as e.g. a strictly convex distance function, we can evaluate the deviations from the 
ideal value v* := (v1,c(1),v2,c(2),...vN,c(N)) at time T for each ω∈Ω. Consequently, the 
deviation of the whole set Ω can be characterised by the following criterion σ:  
 

       σ (u(t0 )(Ω),...u(T-1)(Ω),wt0,...wT-1):= ψ
α1≤ ≤
∑

M

(v* ,F(T)(ωα)) → min        (18) 
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which may be more suitable for economical applications such as e.g. balancing 
the portfolio structure than (15)-(17). While optimising σ, we strive to approach 
the most preferred element of V for a possibly maximal number of elements of 
Ω. As the result, the set of alternatives actually characterised by nondominated 
values of F need not be numerous, but in average, their values are better approx-
imating the ideal value v* than in case of optimising the criterion (15). Let us 
note that always  
 

                                        σ= 
1≤ ≤
∑

k n

xTk ψ (v* ,I(F,xTi )) (19) 

 

From a computational point of view a solution to the above problems con-
sists in solving parallel N discrete optimal control problems coupled by the 
common resource or expense limitation (12). Thus, this problem requires non-
standard solution algorithms based on dynamical programming which have been 
proposed in Sec. 2.2. Roughly speaking, if the decision process is homogeneous 
and the criteria are evolution independent, one can construct the network G pre-
sented in Secs. 2.1 and 2.2, assigning additionally the varying labels xti to the 
nodes v∈V determined by the interpretation vector I(F,xt).  

The further procedure consists in finding shortest paths (in terms of the 
cost function J) to the nondominated values of F(T)(Ω), calculating the values of 
the macroscopic criterion σ, and choosing a subset Ω1⊂Ω of elements which 
values are to be improved.  

Let us remark that the above specified class of systems requires a state-
space description with a usually large number of state variables representing the 
quantities of elements of each class, or other characteristics as functions of time.  

The above description and assumptions reflects a complicated nature of 
certain real-life systems, where the growth coefficients may be derived  
a posteriori from empirical experience. As examples of such systems may serve 
e.g. the populations of concurrent technologies or innovations, inhabitants of  
a town, portfolio of a company, or a wildlife reservation. 
 
 
4. CONCLUDING REMARKS 
 

The motivation for introducing the above theory originates from the real-
life multicriteria decision problems, such as portfolio management, technology 
transfer and foresight (cf. Skulimowski, 2006) or personnel choice, where the 
classical decision support methods do not allow to include the time aspects into 
the problem analysis. The new theoretical issues should constitute a basis for  
a more frequent including the dynamics in the analysis of multicriteria choice 
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problems, allowing thus a more efficient use of all preference information avail-
able which is a basis for an adequate modelling of real-life decision situations.  

The approach proposed can be applied even in the simplest problems with 
discrete set of alternatives, and finite sets of admissible attribute values of each 
criterion. Methodologically, there is no conflict with other preference infor-
mation since we merely extend the set of criteria values at t0, F(Ω), to the set  
 

          Ψ:= F(Ω)x{t0}∪F(Ω)(t1)x{t1}*J(U1) ∪...∪F(Ω)(T)x{T}*J(UT)            (20) 
 

where F(Ω)(ti) is the set of reachable values of F at time ti, and Ui is the set of all 
sequences of strategies (uj(1) ,...uj(i)) on [t0 ,t1] applicable to one of ω. This con-
verts the initial problem (F:X→V)→min into a new problem with set-valued 
objective φ:Ω→2Ψ , each alternative ω being characterised by the set of values 
of F, cost function J, and time :  
 

 φ(ω):= {F(ω)(t0 )} ∪ F(ω)(t1 )x{t1 }xJ(U1 (ω)) ∪…∪ F(ω)(T)x{T}xJ(UT (ω))   (21) 
 

where Ui(ω) contains the sequences of controls from U applicable to ω on [t0 ,t1 
]. Observe that ψ =U∪{φ ( ω) : ω∈Ω}.  
 

However, the choice problem, as applied to the set Ψ, remains the same as 
in the classical multicriteria discrete choice problem, i.e. one has to select  
a compromise value ψc:=(vc,Jc,τ) from Ψ. Once this is done, one has to find the set  
 

                 φ-1(ψc):={ ω∈Ω : F(ω)( τ) = vc and J(F(ω),u1 ,...uτ )=Jc }               (22) 
 

If the set (22) contains more than one alternative, all they are equivalent 
with respect to the choice criteria admitted. Therefore we expect that the above 
presented issues might be implemented as direct extensions of well known dis-
crete choice and outranking decision models. Moreover, in most problems, J can 
be aggregated with one or more of the criteria F1,...,FN, which simplifies the 
formulation of the problem (21)-(22).  

The solution method applied to the Problem 2.1 shows a remarkable coin-
cidence with the approach to the multicriteria optimal control of discrete-event 
systems presented in [8]. On the other hand, however, the approach to simulta-
neously control the evolution of a population Ω outlined in Sec. 3, resulting in  
a discrete-time control system model (13) could be applied to control large-scale 
discrete-event systems which allow an appropriate decomposition of the state-
space.  
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In the present paper we concentrated our attention on deterministic 
processes, although in real-life situations some of the transitions may be 
stochastic. The analysis of such systems which involves the optimal control of 
discrete Markov processes (cf. e.g. [7]) may be considered as generalisation of 
the methods here presented and needs further investigation. 
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