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Abstract 
 

This paper is devoted to multicriteria decision making under uncertainty 
with scenario planning. This topic has been explored by many researchers 
since almost all real-world decision problems contain multiple conflicting 
criteria and a deterministic criteria evaluation is often impossible.  

We propose a procedure for uncertain multi-objective optimization 
which may be applied when a mixed strategy is sought after. A mixed 
strategy, as opposed to a pure strategy, allows the decision maker to select 
and perform a weighted combination of several accessible alternatives. 

The new approach takes into account the decision maker’s preference 
structure and attitude towards risk. This attitude is measured by the coeffi-
cient of optimism on the basis of which a set of the most probable events 
is suggested and an optimization problem is formulated and solved. 

 

Keywords: multicriteria decision making, uncertainty, mixed strategy, one-shot decision, 
scenario planning, optimization model, coefficient of optimism, β-decision rule. 
 
1 Introduction 
 

This paper deals with multiple criteria decision making for cases where attribute 
(criterion) evaluations are uncertain. This topic has been theoretically and practi-
cally investigated by many researchers. Durbach and Stewart (2012) provide an 
impressive review of possible models, methods and tools used to support uncer-
tain multicriteria decision making (e.g. models with scenarios, models using 
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probabilities or probability-like quantities, models with explicit risk measures, 
models with fuzzy numbers). In this paper we propose a method designed for 
multicriteria decision making with scenario planning and one-shot decision 
problems. We assume that criteria payoff matrices are dependent. The goal of the 
new approach is to select an optimal mixed strategy. The procedure takes into 
consideration decision makers’ objective preferences and their attitude towards 
risk. This attitude is measured by the coefficient of optimism on the basis  
of which a set of the most probable events is suggested and an optimization 
problem is formulated and solved. 

The paper is organized as follows. Section 2 deals with the main features  
of multicriteria DMU (decision making under uncertainty) with scenario plan-
ning. Section 3 presents a procedure that may be used as a tool in multicriteria 
optimization under uncertainty for mixed strategy searching. Section 4 provides 
a case study. Conclusions are gathered in the last section.  
 
2 Uncertain multicriteria decision making with scenario planning 
 

According to the Knightian definition (Knight, 1921), we will assume that DMU 
is characterized by a situation where the decision maker (DM) has to choose the 
appropriate alternative (decision, strategy) on the basis of some scenarios 
(events, states of nature) whose probabilities are not known – uncertainty with 
unknown probabilities (Courtney et al., 1997; Dominiak, 2006; Groenewald and 
Pretorius, 2011; Render et al., 2006; Sikora, 2008; Trzaskalik, 2008; von Neu-
mann and Morgenstern, 1944; Walliser, 2008; Williams et al., 1997).  

There are many classical and extended decision rules designed for one-
criterion DMU (Basili, 2006; Basili et al., 2008; Basili and Chateauneuf, 2011; 
Ellsberg, 2001; Etner et al., 2012; Gaspars, 2007; Gaspars-Wieloch, 2012, 2013, 
2014a, 2014b, 2014c, 2014d, 2014, 2015a, 2015b, 2015c; Ghirardato et al., 
2004; Gilboa, 2009; Gilboa and Schmeidler, 1989; Hayashi, 2008; Hurwicz, 
1952; Ioan and Ioan, 2011; Marinacci, 2002; Piasecki, 1990; Savage, 1961; 
Schmeidler, 1986; Tversky and Kahneman, 1992; Wald, 1950) and multicriteria 
DMU (Aghdaie et al., 2013; Ben Amor et al., 2007; Dominiak, 2006; 2009; 
Durbach, 2014; Eiselt and Marianov, 2014; Gaspars-Wieloch, 2014e; Ginevičius 
and Zubrecovas, 2009; Goodwin and Wright, 2001; Hopfe et al., 2013; Janjic et 
al., 2013; Korhonen, 2001; Lee, 2012; Liu et al., 2011; Michnik, 2013; Mikhai-
dov and Tsvetinov, 2004; Montibeller et al., 2006; Ram et al., 2010; Ramik et 
al., 2008; Ravindran, 2008; Stewart, 2005; Suo et al., 2012; Triantaphyllou and 
Lin, 1996; Tsaur et al., 2002; Urli and Nadeau, 2004; Wang and Elhag, 2006; 
Wojewnik and Szapiro, 2010; Xu, 2000; Yu, 2002). Nevertheless, the majority  
of the extended rules refer to the probability calculus (for instance, expected util-
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ity maximization, α-maximin expected utility, cumulative prospect theory, Cho-
quet expected utility), which is rather characteristic of DMR – decision making 
under risk or DMU with known probabilities. Let us recall that according to the 
Knight’s definition uncertainty occurs when we do not know (i.e. we cannot 
measure) the probabilities of particular scenarios1 (see complete uncertainty).  

Some existing procedures are dedicated to searching for an optimal pure 
strategy, other are designed for searching for an optimal mixed strategy. In the 
case of pure strategies, the DM chooses and completely executes only one alter-
native. On the other hand, a mixed strategy implies that the DM selects and per-
forms a weighted combination of several accessible alternatives, see e.g. bonds 
portfolio construction, cultivation of different plants (Guzik, 2009; Ignasiak, 
1996; Officer and Anderson, 1968; Puppe and Schlag, 2009; Sikora, 2008). This 
paper will deal with the latter case.  

We recognize both types of uncertainties: internal (related to DM’s values 
and judgments) and external (related to imperfect knowledge of the conse-
quences of action), but in this paper we focus on the latter (Durbach and Stewart, 
2012; Stewart, 2005). 

Durbach and Stewart (2012) state that uncertainties become increasingly so 
complex that the elicitation of measures such as probabilities, belief functions or 
fuzzy membership functions becomes operationally difficult for DMs to com-
prehend and virtually impossible to validate. Therefore, in such contexts it is 
useful to construct scenarios which describe possible ways in which the future 
might unfold. Hence, MDMU+SP (multicriteria decision making under uncer-
tainty with scenario planning) will be considered in this paper. Scenario plan-
ning, used within the framework of DMU (Pomerol, 2001), is a technique for facili-
tating the identification of uncertain and uncontrollable factors which may influence 
the effects of decisions in the strategic management context. The construction of 
scenarios is described e.g. in (Dominiak, 2006; Van der Heijden, 1996). The result of 
the choice made under uncertainty with scenario planning depends on two factors: 
which decision will be selected and which scenario will occur.  

The discrete version (the set of alternatives is explicitly defined and discrete 
in number) of MDMU+SP consists of n decisions (D1, …, Dj, …, Dn), each 
evaluated on p criteria C1, …, Ck, …, Cp and on m mutually exclusive scenarios 
(S1, …, Si, …, Sm). The problem can be presented by means of p payoff matrices 
(one for each criterion) and p×n×m evaluations. Each payoff matrix contains 

                                                 
1  Of course, we are aware of the fact that many researchers apply the alternative approach accor-

ding to which each non-deterministic (with known and unknown probabilities) decision pro-
blem is treated as an uncertain problem, while risk is understood as the possibility that some ad-
verse circumstances might happen (see. e.g. Ogryczak and Sliwiński, 2009).   
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n×m evaluations, say aij
k, which denote the performance of criterion Ck resulting 

from the choice of decision Dj and the occurrence of scenario Si . We assume that 
the distribution of payoffs related to a given decision is discrete.  

Existing decision rules differ from each other with respect to the DM’s atti-
tude towards risk which can be measured, for instance, by the coefficient of pes-
simism (α) or the coefficient of optimism (β). Note that in this context we do not 
treat risk as a situation where the probability distribution of each parameter of 
the decision problem is known, but we admit the possibility that some adverse 
circumstances might happen (Dominiak, 2006, 2009; Fishburn, 1984). 

It is worth emphasizing that some rules can be applied when the DM intends 
to perform the selected strategy only once. Others are recommended for people 
considering multiple realizations of the chosen variant. In the first case, the al-
ternatives are called one-shot (one-time) decisions; in the second case, multi-
shot decisions. This paper focuses on one-shot decision problems which are 
commonly encountered in business, economics and social systems (Guo, 2010, 
2011, 2013, 2014; Liu and Zhao, 2009). 

Marler and Arora (2004) divide multi-objective optimization concepts and 
methods into three categories: (a) methods with a priori articulation of prefer-
ences (MPAP), (b) methods with a posteriori articulation of preferences 
(MPSAP) and (c) methods with no articulation of preferences (MNAP).  
In MPAP the user indicates the relative importance of the objective functions or 
desired goals (by means of parameters which are coefficients, exponents, or con-
straint limits) before running the optimization algorithm (Chang, 2011; Chur-
mann and Ackoff, 1954; Gaspars-Wieloch, 2011; Lotfi et al., 1997). MPSAP en-
tail selecting a single solution from a set of mathematically equivalent solutions. 
This means that the DM imposes preferences directly on a set of potential final 
solutions. In this paper we propose an MPAP procedure with the application  
of weights for each attribute. 

As mentioned before, the decision rule presented in this paper allows the DM 
to find an optimal mixed strategy, but it is worth emphasizing that the existing 
one-criterion and multicriteria procedures for mixed strategies are related more 
to game theory, i.e. game between players (Czerwiński, 1969; Gilboa, 2009; 
Grigorieva, 2014; Lozan and Ungureanu, 2013; Luce and Raiffa, 1957; Voorne-
veld et al., 1999; 2000), than to game against nature (which constitutes a neutral 
opponent). Therefore, the creation of an approach for uncertain multiobjective 
mixed decision making with scenario planning (or scenario-based MMDM) 
seems vital and desirable.  
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3 β-decision rule for uncertain multicriteria mixed decision making 
 
When preparing a decision rule for uncertain multicriteria mixed decision mak-
ing, one should answer two main questions: (1) how should DM’s preferences 
(concerning the attitude towards risk and the importance of particular criteria) be 
taken into account?, and (2) how should criteria be aggregated and how should 
they be combined with scenarios?   

Possible rules for 1-criterion mixed strategies are as follows:  
(a) Bayes’ rule (the DM performs the selected plan many times) – the optimiza-

tion model maximizes the average income. 
(b) Wald’s rule (the DM performs the chosen decision only once and behaves 

cautiously, the minimal guaranteed benefit is maximized) – the solution  
of such a problem ensures that even if the least attractive scenario takes 
place, the income of the DM will not be lower than y*, i.e. the maximized 
minimum guaranteed revenue. 

(c) Hurwicz’s rule (the DM performs the selected plan only once and declares 
the level of pessimism or optimism) – the optimization model takes into 
consideration only extreme payoffs connected with a given alternative, not 
the frequency of the occurrence of intermediate ones (see Gaspars-Wieloch, 
2012; 2014a; 2014c), which may lead to quite illogical recommendations.  

The last two approaches treat nature as a conscious opponent who is altering 
strategies depending on the outcomes, which is strongly criticized by (Milnor, 
1954; Officer and Anderson, 1968).  

In connection with the fact that we analyze only one-shot decisions and that 
solutions recommended by the rule should vary depending on the DM’s attitude 
towards risk, Hurwicz’s rule seems the most appropriate. Nevertheless, due to 
some drawbacks connected with this procedure, we will refer to another method 
– the β-decision rule, originally designed for one-criterion mixed decision mak-
ing (Gaspars-Wieloch, 2014b). In this method the number of scenarios consid-
ered in the optimization model depends on the level of the DM’s optimism.  
If β = 0, then all states of nature are taken into account, since the DM intends to 
be well prepared for the uncertain future. Meanwhile, if β > 0, then the initial set 
of possible scenarios is appropriately reduced to a smaller set of events, because 
the most pessimistic states of nature may be omitted in the analysis (i.e. they are 
the least probable). When β = 0, the mixed strategy recommended by the  
β-decision rule is the optimal solution generated by the problem formulated ac-
cording to Wald’s rule. In Gaspars-Wieloch (2014b) it is suggested to assign the 
status to a given event on the basis of two measures connected with the out-
comes of that state of nature. Nevertheless, the method of determining the set  
of the most probable scenarios may be different. 
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c) it is applicable to problems with criteria defined in different scales and units, 
d) it generates a synthetic measure for each pair: decision/scenario.   

Therefore, the only methods satisfying all conditions aforementioned are 
SAW, SMART, SMARTER and TOPSIS. Here, the β-decision rule will be com-
bined with SAW (Simple Additive Weighting Method). 

Hence, the β-decision rule for multicriteria mixed decision making includes 
the following steps: 

Step 1: Given a set of potential decisions and payoff matrices for each crite-
rion, define an appropriate value of the parameter β ∈ [0,1] according to your 
level of optimism and choose weights wk for each attribute (k = 1,…,p): 

                                                      
∑

=

=
p

k

kw
1

1
                                                     

(1)
 

Step 2: If necessary, normalize the evaluations (use Equation (2) for maxi-
mized criteria and Equation (3) for minimized criteria): 

 

           

{ }
{ } { }k

ij
nj
mi

k
ij

nj
mi

k
ij

nj
mi

k
ij

k
ij aa

aa

na

,...,1
,...,1

,...,1
,...,1

,...,1
,...,1

minmax

min

)(

=
=

=
=

=
=

−

−

=

       

k = 1,…,p, i = 1,…,m, j = 1,…,n        (2)

 

          

{ }

{ } { }k
ij

nj
mi

k
ij

nj
mi

k
ij

k
ij

nj
mi

k
ij aa

aa

na

,...,1
,...,1

,...,1
,...,1

,...,1
,...,1

minmax

max

)(

=
=

=
=

=
=

−

−

=

       

k = 1,…,p, i = 1,…,m, j = 1,…,n         (3)

 
Step 3: Compute the aggregated measure A(n)ij for each pair: deci-

sion/scenario (according to the methodology of SAW): 

                            
∑

=

⋅=
p

k

k
ij

k
ij nawnA

1

)()(
   

i = 1,…,m, j = 1,…,n                         (4)
 

Step 4: Find M* (the maximum aggregated value computed according to the 
max-max rule) and calculate y* which is the maximized minimum guaranteed 
aggregated value computed on the basis of Wald’s model (Equations 5-8): 
                                                           y → max                                                   (5)  

                                          
yxnA

n

j
jij ≥∑

=1
)(

    
 i = 1,…,m                                   (6)

 

                                                          
1

1
=∑

=

n

j
jx

                                                  
(7)

 
                                                     xj≥ 0      j = 1,…,n,                                          (8) 
where xj is the share of alternative Dj in the mixed strategy and n stands for the 
number of decisions. 
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Step 5: Find the set of the most probable scenarios (K) with the aid of Equations (9)-(13): 

                     
( ))(

),...,1()( ββ ddrnAKS iijnjnAi
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≥∨⎟
⎠
⎞
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⎝
⎛ ≥∃⇔∈

=                   
(9)

 

                                           
)( *** yyMr +−= ββ

                                   
(10)

 

                                       
)( minminmax dddd +−= ββ

                             
(11)

 

                                         
∑
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=
n

j
iji dd

1       
i = 1,…,m                                       (12)

 

                   
{ }))((max ijiij nApmd −=

         
i = 1,…,m, j = 1,…,n                (13)

 
where K is the set of the most probable events, A(n)ij is the synthetic value of 
normalized payoffs connected with decision Dj and event Si. rβ is the expected 
level of the aggregated outcome dependent on β (Equation 10). dij denotes the 
number of aggregated values related to alternative Dj which are worse than 
A(n)ij. The symbol m still denotes the number of scenarios and p(A(n)ij) is the 
position of the value A(n)ij in the non-increasing sequence of all synthetic 
evaluations connected with decision Dj (if A(n)ij has the same value as other 
evaluations of a given alternative, then it is recommended to choose the farthest 
position of this value in the sequence – see Equation 13). di is the total number of 
“dominance cases” related to state Si (Equation 12), dmax and dmin are the biggest 
and the smallest number of “dominance cases”, respectively (Equation 11). 

As can be seen, scenario Si may belong to K if and only if it contains at least 
one aggregated payoff not lower than rβ (Equations 9 and 10) or if its number of 
“dominance cases” is sufficiently close to dmax  (Equations 9 and 11). The sce-
nario with dmax and with at least one aggregated payoff equal to M* might be 
treated as the best state of nature (the most optimistic), but in many decision 
problems such an event does not exist.  

Step 6: Solve the following optimization problem: 

                                             
min}0,max{ →∑

∈Ki
ig

                                          
(14)

 

                                     
i

n

j
jij grxnA −=∑

=
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1
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i ∈ K                                   (15)

 

                                                      
1

1
=∑
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j
jx

 
                                                   (16)

 
                                                xj ≥ 0       j = 1,…,n                                            (17) 
where gi is the deviation from rβ of the aggregated income achieved by the DM 
if scenario Si occurs. The optimal solution represents the multi-criteria mixed 
strategy reflecting the DM’s level of optimism.  
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Both sides of condition (15) present the true aggregated revenue obtained if 
the shares of a particular mixed strategy equal x1, x2, …, xn and scenario Si takes 
place. The aim of the optimization model (Equation 14) is to minimize, within 
the set K, the sum of all deviations of the true aggregated payoffs from the ex-
pected one. Note that only positive deviations are disadvantageous since then the 
expected revenue exceeds the true aggregated income.  

Let us call the aforementioned procedure β-MMDM, i.e. the β decision rule 
for multicriteria mixed decision making.   
 
4 Case study 
 

The method suggested in this paper will be illustrated by means of the following 
example. Let us assume that the DM intends to find the optimal mixed strategy 
on the basis of two objectives C1 and C2, which are both maximized. There are 
four possible decisions: D1, D2, D3 and D4. The DM is not able to define exact 
evaluations of both criteria, but thanks to scenario planning the list of possible 
states of nature (S1, S2, S3, S4, S5) has been generated. Table 1 presents payoff 
matrices of the analyzed decision problem. 

To find the most appropriate strategy with the aid of β-MMDM, in the first 
step the DM is asked to declare the coefficient of optimism, let us say β = 0.7, 
and to set weights for each attribute, e.g. w1 = 0.4 and w2 = 0.6.  
 

Table 1: Payoff matrices – initial evaluations 
 

 C1 C2 
No D1 D2 D3 D4 D1 D2 D3 D4 
S1 2.5 4.0 4.5 3.0 20 22 15 21 
S2 1.3 2.5 3.5 3.0 32 18 19 17 
S3 1.6 3.0 4.3 2.0 29 19 16 18 
S4 1.7 3.0 2.0 2.5 28 15 23 24 
S5 1.5 3.5 4.2 4.0 30 17 16 24 

 
Step 2 is optional, but in our case it is obligatory because the evaluations are de-

fined in different scales. The normalized values are computed in Table 2 (Equation 2). 
 

Table 2: Payoff matrices – normalized values 
 

 C1 C2 
No D1 D2 D3 D4 D1 D2 D3 D4 
S1 0.38 0.84 1.00 0.53 0.29 0.41 0.00 0.35 
S2 0.00 0.38 0.69 0.53 1.00 0.18 0.24 0.12 
S3 0.09 0.53 0.94 0.22 0.82 0.24 0.06 0.18 
S4 0.13 0.53 0.22 0.38 0.76 0.00 0.47 0.53 
S5 0.06 0.69 0.91 0.84 0.88 0.12 0.06 0.53 
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In step 3 we refer to the A-CS approach and to SAW. The aggregated normal-
ized values are given in Table 3 (Equation 4). 

 
Table 3: Aggregated measures A(n)ij 

 

No D1 D2 D3 D4 
S1 0.326 0.585 0.400 0.424 
S2 0.600 0.256 0.416 0.283 
S3 0.532 0.354 0.410 0.193 
S4 0.509 0.213 0.370 0.468 
S5 0.554 0.346 0.398 0.655 

 
In step 4 we find M* = max{0.600;0.585;0.416;0.655} = 0.655 and y* = 0.418 

according to the following model: 
y → max 

0.326x1 + 0.585x2 + 0.400x3 + 0.424x4 ≥ y 
0.600x1 + 0.256x2 + 0.416x3 + 0.283x4 ≥ y 
0.532x1 + 0.354x2 + 0.410x3 + 0.193x4 ≥ y 
0.509x1 + 0.213x2 + 0.370x3 + 0.468x4 ≥ y 
0.554x1 + 0.346x2 + 0.398x3 + 0.655x4 ≥ y 

x1 + x2 + x3 + x4 = 1 
x1, x2, x3, x4 ≥ 0 

In step 5 parameters rβ (Equation 10) and dβ (Equations 11-13) are calculated 
in order to find the most probable scenarios: 

rβ = 0.7(0.655 – 0.418) + 0.418 = 0.5838 
dβ = 0.7(10 – 4) + 4 = 8.2 

Table 4 contains the values of “dominance cases” and the sum of “dominance 
cases” for each state of nature (dmax = max{8;10;8;4;10} = 10, dmin = min{8;10;8;4;10} = 4). 
 

Table 4: “Dominance cases“ 
 

No D1 D2 D3 D4 di 
S1 0 4 2 2 8 
S2 4 1 4 1 10 
S3 2 3 3 0 8 
S4 1 0 0 3 4 
S5 3 2 1 4 10 

 
Hence, there are three scenarios with at least one value not lower than rβ, i.e. 

S1, S2 and S5. Additionally, we note that the sum of “dominance cases” for 
events S2 and S5 is not lower than dβ.That means that the set K contains three 
elements: K={S1, S2, S5}, see Equation (9). 
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The optimal multicriteria mixed strategy (x1 = 0.9489, x2 = 0, x3 = 0, x4 = 0.0511) 
is established on the basis of the optimization model formulated below (step 6): 

max{g1,0} + max{g2,0} + max{g5,0} → min 
0.326x1 + 0.585x2 + 0.400x3 + 0.424x4 = 0.5838 – g1 
0.600x1 + 0.256x2 + 0.416x3 + 0.283x4 = 0.5838 – g2 
0.554x1 + 0.346x2 + 0.398x3 + 0.655x4 = 0.5838 – g5 

x1 + x2 + x3 + x4 = 1 
x1, x2, x3, x4 ≥ 0 

 

Thus, the DM should invest 94.89% of his funds in decision D1 and 5.11% in 
decision D4. The deviation degrees for scenarios S1, S2 and S5 are: g1 = 0.2528, 
g2 = 0, g5 = 0.0246. The deviation for event S1 is the largest, but note that this 
state of nature does not satisfy the second condition of disjunction (9), which 
means that this is the least probable scenario among all scenarios belonging to K. 

In this paper, the set K is formed in the paper on the basis of two criteria (the 
expected aggregated income rβ and the number of “dominance cases” dβ). Never-
theless, this is only a suggestion – one may choose other indices. Here, we will 
explain why it is recommended to consider both rβ and dβ, not only the first crite-
rion. When the maximum aggregated payoff M* is much higher than the remain-
ing payoffs in the matrix, then, even for low values of β, index rβ  becomes so 
high that only the scenario offering M* meets the criterion rβ . This means that in 
such cases, regardless of the level of optimism, only one state of nature is treated 
as the most probable, which is not reasonable. The cardinality of the set K de-
pends on the coefficient of optimism. The higher β is, the fewer elements the set 
K contains. However, it is worth emphasizing that when β = 1, the set of the 
most probable scenarios does not need to contain exactly one element.   
 
5 Conclusions 
 
In this paper, we propose a procedure for uncertain multiobjective optimization 
which may be applied when a mixed strategy is sought. The new approach  
(β-MMDM, i.e. β-decision rule for multicriteria mixed decision making) takes 
into account the decision maker’s preference structure and attitude towards risk. 
This attitude is measured by the coefficient of optimism on the basis of which  
a set of the most probable events is suggested and an optimization problem is 
formulated and solved. The β-decision rule (a procedure originally designed for 
scenario-based one-criterion mixed decision making) is combined with the Sim-
ple Additive Weighting Method. Hence, according to the classification described 
in (Michnik, 2012), the  β-MMDM is not a typical MCDA (multicriteria decision 
analysis) hybrid, since only one of its components involves multiobjective opti-
mization (i.e. SAW), while the other one is related to one-criterion decision 
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problems. The new decision rule has at least four significant advantages. First, it 
recommends different mixed strategies depending on the DM’s level of opti-
mism (in contradiction to Wald’s rule or max-max rule). Second, it involves 
game against nature, while the existing multicriteria mixed decision making pro-
cedures are designed for games with another player). Third, is does not treat na-
ture as a conscious opponent who is altering strategies depending on the out-
comes. Fourth, it is suitable for problems with criteria defined in different scales 
and units. Future research should deal with the coefficient of optimism, i.e. the 
method of estimation of that parameter and its impact on the final decision.      
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