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Abstract 
 

We consider multiobjective, multistage discrete dynamic decision proc-
esses. In this paper we propose an interactive procedure which allows to 
solve the problem of optimal control of such a process in the case when the 
decision maker has determined a group hierarchy of stage criteria. This hier-
archy is changeable and depends on the stage of the process. The proposed 
algorithm is illustrated by a numerical example. 

 

Keywords: multiobjective multistage decision process, multiobjective dynamic  
programming, hierarchical problem, group hierarchy. 
 
1 Introduction 
 

The present paper is a continuation of the discussion conducted in Trzaskalik  
(in press). We consider decision processes consisting of a finite number of stages, 
determined by the decision maker. The decisions are made at the beginning of the 
consecutive stages and evaluated using many evaluation criteria. In the evaluation 
of the feasible process realizations we will use both stage criteria, which are related 
to the specific stages of the process, and multistage criteria, used to evaluate the 
overall realization of the process. Problems of this type are classified as problems 
of multiobjective dynamic programming. We consider the most frequently occur-
ring situation, in which multistage criteria are sums of stage criteria.  
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When formulating the issue of process realization evaluation we refer to the 
general notion of optimality in multiobjective problems (Steuer, 1986). We assume 
that the components of the vector criteria function are the consecutive multistage 
criteria. As vector-optimal realizations we admit those which are non-dominated 
(in the criteria space) or efficient (in the decision space) (Trzaskalik, 1990). 

Among the varied topics dealt with currently there are many problems in 
which the hierarchization of the evaluation criteria is an essential element. An 
overview of the problems discussed has been presented in Trzaskalik (in press).  

A change in importance of the criteria often influences decision making. Not 
infrequently, to achieve a better stage evaluation of a criterion which is impor-
tant at the given stage, the decision maker is inclined to give up on the optimiza-
tion of the realization of the multistage objectives. Obtaining such immediate 
profits can, however, have a very negative impact on the evaluation of the entire 
process. For that reason, in the case of criteria hierarchization, it seems justified 
to focus the analyses on the values of both the stage and multistage criteria. 

The present paper attempts to answer the question about the method of con-
trolling a multistage process so as to take into account at the same time both the 
tendency to multiobjective optimization of the entire process and the time-
varying group hierarchy of stage criteria. We will discuss in detail one of many 
possible situations, in which the stage hierarchy varies in the consecutive stages 
and depends on the stage. We will present an interactive proposal of the solution 
of this problem, in which the decision maker actively participates in the process 
of finding the final realization of the process. 

The present paper consists of six sections. In Section 2, we define the nota-
tion used and present the notion of vector optimization for a multiobjective deci-
sion process. Section 3 describes the idea of the group hierarchy of criteria.  
In Section 4 we formulate the hierarchical problem discussed in the paper and 
propose a solution procedure. A detailed solution of an illustrative numerical ex-
ample is in Section 5. A summary completes the paper.  
 
2 Multistage, multiobjective discrete decision process  

(Trzaskalik, in press) 
 

We define T,1  to be the set of all integer numbers from 1 to T and denote it as 
follows:  

T,1  = {1,…,T} 
We consider a discrete decision process consisting of T stages. Let yt be the state 
variable at the beginning of the stage number t, Yt – the set of all feasible state 
variables for stage t, xt – the decision variable for stage t and X(yt) – the set of all 

(1) 
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feasible decision variables for stage t and state yt. We assume that all sets of 
states and decisions are finite. A stage realization is defined as follows:  

dt  (yt, xt) 
Let Dt be the set of all stage realizations in stage t. We define dt(yt) as the stage 
realization which begins in state yt. The set of all stage realizations which begin 
in a given state yt is defined as follows:  

Dt(yt) = {dt(yt) ∈ Dt: dt = (yt, xt) ∧ xt ∈ Xt(yt)} 

We assume that for t T,1 the transformations:  
t: Dt  Yt+1 

are given. A sequence of stage realizations:  
(d1,…,dT) = (y1, x1, y2, x2,…,yT, xT) 

is called a process realization and denoted as d, if:  
∀t∈ T,1 yt+1 = Ωt(yt, xt) 

Let D be the set of all process realizations.  
We assume that we consider K criteria and that for each stage t and K,k 1∈ , 

stage criteria functions k
tF : Dt  R are defined. For the given realization d we 

obtain the values:  
1

1F (d1) 2
1F (d1) … KF1 (d1) 

…… …..…………………………. 
1

TF (dT) 2
TF (dT) … K

TF (dT) 
F is a vector-valued criterion function for the evaluation of the entire process 
and its components Fk , K,k 1∈ , are defined as follows:  

( ) ( )∑
=

=
T

t
t

T
k

k dFdF
1

 

We postulate maximization of all the components of F.  
Let us assume that two process realizations: d , d~  and vectors:   

)(dF   [ )(1 dF , … )(dF K ] 

)~(dF   [ )~(1 dF , … )~(dF K ] 

are given. The relation of domination  is defined as follows:  

)(dF   )~( dF   )([
,1

dF k

Kk∈
∀   )]~( dF k  

 )([
,1

dF i

Ki∈
∃  > )]~( dF i  

 
 

(2) 
 
 

 
(3) 
 
 
(4) 
 
(5) 
 
(6) 
 
 
 
 
 
 
 
 
 
 
 
 
 
(7) 
 
 
 
 
 
 
 
 
 
(8) 
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If )(dF   )~( dF  we say that vector )(dF dominates vector )~( dF and realization 

d  is better than realization .~d  Realization 
*
d  is said to be efficient if:  

)(~ dF
Dd∈
∃   )(

*
dF  

Let 
*
D  be the set of all efficient realizations for the given criterion function F. 

The problem of finding 
*
D  is called the dynamic vector optimization problem. 

The set:  
)(dD

*
  {

*

Dd ∈
*

: )(
*
dF   )(dF } 

consists of all efficient realizations which are better than d . The algorithm of 
finding the set of all efficient realizations of the process and the algorithm of 
finding the set of efficient realizations better than the chosen one is described in 
Trzaskalik (1990).  
 
3  Group hierarchy of criteria  
 

The issue of hierarchization of criteria has been presented many times in the lit-
erature dealing with multiobjective decision making, in particular in papers on 
goal programming. This hierarchization is understood in two ways. In the first 
approach, the criteria are assigned weight coefficients and the importance of  
a criterion is reflected by the appropriate value of this coefficient: the more im-
portant the criterion, the larger the value of the weight coefficient. In the second 
approach, hierarchy levels are introduced. Criteria on higher levels are regarded 
as more important than those on lower levels; criteria on the same level are 
equally important for the decision maker. For criteria situated at the same hierar-
chy level weight coefficients can also be used (Jones, Tamiz, 2010). 

When hierarchy levels are used, we can introduce a single hierarchy or  
a group hierarchy. In the former case, a hierarchy level contains only a single 
criterion. In the latter case, a hierarchy level can contain more than one criterion 
(Galas, Nykowski, Żółkiewski, 1987).  

In a discussion of hierarchical problems with a single criteria hierarchy it is 
important to create an appropriate numbering of criteria. The criteria can be 
numbered so as to assign the number 1 to the most important criterion, the num-
ber 2 to the second-most important criterion – one that is less important than cri-
terion number 1 but more important than all the remaining criteria, and so on.  
A similar method of numbering can be applied in the case of group hierarchy. 
Criteria from a more important group will have numbers lower than all the less 
important criteria; criteria from the same group are equally important. Therefore, 
the numbering of criteria within one group is ambiguous.  

(9) 
 
 
 
 
 

(10) 
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The issue of criteria hierarchization discussed above appears also when mul-
tistage decision processes are considered. In such cases, both stage criteria and 
multistage criteria can occur. When a hierarchy of stage criteria is established, 
we can hierarchize multistage criteria in the same way as described above.  

A different situation occurs when the importance of stage criteria for the de-
cision maker vary from stage to stage. This is the case of a changeable stage  
hierarchy. We assume that at the given stage, stage criteria have been divided 
into a certain number of groups, depending on their importance. Each group con-
tains criteria which are equally important for the decision maker. Moreover,  
a hierarchy of stage criteria can undergo changes in the consecutive stages.  

The issue of hierarchization of multistage and stage criteria was discussed be-
fore by the present author. In Trzaskalik (1997) the issue of searching for the 
best process realization was discussed, in the situation when a hierarchy of multi-
stage criteria was given. Each time when the consecutive (with respect to impor-
tance) criteria were analyzed, the stage structure of the consecutive process re-
alizations was analyzed. The changeability of hierarchies of stage criteria was 
discussed in other papers, too. In Trzaskalik (1995) a hierarchy dependent on the 
joint value of the stage criteria obtained in previous stages was discussed, while 
in Trzaskalik (1992), a hierarchy dependent on the current state of the process. 
These discussions were continued in Trzaskalik (1998a, 1998b), which dealt also 
with the case of group hierarchy. Changeable, weighted relevance of stage objec-
tives was discussed in Trzaskalik (2009). In each of those cases, the process re-
alization, which satisfies best the assumptions regarding the hierarchization of 
stage and multistage criteria, was compared with the set of efficient realizations.  

The changeable group hierarchy of stage criteria discussed further will be  
illustrated by an example. We consider a 3-stage process. In stage 1, the stage 
criteria are F1

1, F1
2, F1

3 i F1
4, in stage 2 they are F2

1, F2
2, F2

3 i F2
4, in stage 3 they 

are F3
1, F3

2, F3
3 i F3

4. In the proposed notation the lower index is the stage num-
ber, while the upper index is the criterion number. We call the criteria with the 
same value of the upper index single-name criteria; they refer to the same aspect 
of the process under consideration.  

An possible method of dividing the criteria could be the following. In stage 1 
the decision maker divided the criteria into two groups: more important: F1

2 and 
F1

3 and less important: F1
1 and F1

4. In stage 2 all the criteria are equally impor-
tant, therefore we have a single group of stage criteria. In stage 3 the criteria 
were divided into three groups. The first group contains only one, the most im-
portant, criterion F3

2. The second group contains the second-most important cri-
terion F3

1. The third group contains the two least important criteria F3
3 and F3

4. 
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Denoting as Kt
i the ith most important group of criteria at stage t, and by It

i , the 
set of indices corresponding to the numbers of stage criteria in set Kt

i, we can write:  
 K1

1 =   {F1
2, F1

3}   K1
2 = {F1

1, F1
4}  

 K2
1=    {F2

1, F2
2, F2

3, F2
4}    

 K3
1 =   {F3

2}    K3
2=     {F3

1}         K3
3 = {F3

3, F3
4}  

 I1
1 = {2, 3},     I1

2 = {1, 4}  
 I2

1 = {1, 2, 3, 4} 

 I3
1 = {2}            I3

2 = {1}                 I3
3 = {3, 4} 

At stage 1 the criteria from group K1
1, that is, F1

2 and F1
3, are equally impor-

tant; at the same time, each of them is more important than the remaining criteria 
for this stage, that is, F1

1 and F1
4. On the other hand, criteria F1

2 and F1
3 are 

equally important and less important than both F1
1 and F1

4.  
At stage 2 all the criteria are equally important: none is less or more impor-

tant, hence all of them belong to the same group K2
2.  

At stage 3 criterion F3
2 belonging to the (1-element) group Kt

i is more impor-
tant than all the remaining criteria, that is, F3

2, F3
3 and F3

4. Criterion F3
1, belong-

ing to the second-most important (1-element) group Kt
i, is less important than 

F3
2 but more important than the criteria from group K3

3, that is, F3
3 and F3

4. Fi-
nally, criteria F3

3 and F3
4 are equally important.  

This example shows that the number of groups into which the criteria are di-
vided can vary from stage to stage. In particular, at some stages, all criteria can 
be equally important. One-element criteria groups can also occur. Also, the com-
position of the groups can vary from stage to stage.  

Further in the paper we assume that in each process stage t (t = 1, …, T) the 
decision maker divided the stage criteria into it groups denoted Kt

i, with the cor-
responding sets of stage criteria numbers denoted It

i, ti,i 1∈ . This way we ob-
tain a division into the following groups of criteria:  

for stage 1: 1
1

2
1

1
1

i,,, KKK K  
for stage 2: 2

2
2
2

1
2

i,,, KKK K  
…………………………….. 
for stage T: Ti

TTT ,,, KKK K21  

and sets of indices: 
for stage 1: 1

1
2

1
1
1 ,,, iIII K  

for stage 2: 2
2

2
2

1
2 ,,, iIII K  

…………………………….. 
for stage T: Ti

TTT III ,,, 21 K  
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We assume that:  
=I    I l

t
k
tilk,Tt t,1∈,1∈ ∀∀  

4 Description of the procedure  
 

The purpose of the procedure described in this section is the selection of a proc-
ess realization which, on the one hand, fulfills the decision maker’s expectations 
as to the achievement of stage goals according to the group hierarchy described 
in the previous section and, on the other hand, realizes the multistage objectives 
in the best possible way. This procedure makes the decision maker aware of the 
consequences of the stage decisions which he/she makes to realize the multistage 
objectives. It also points out new possibilities which result from the analysis of 
both the stage and multistage objectives. Below we describe the consecutive 
stages of the procedure, comparing it with the procedure proposed in Trzaskalik 
(in press) for a single hierarchy of stage criteria.  
 

Selection of the initial stage  
We find the maximum value for each stage criterion F1

j from group K1
1. We 

normalize the stage values for each criterion from this group. This allows to sum 
up the normalized values for each process state under consideration. As the ini-
tial state we propose to select the one for which the sum of normalized values is 
largest. If there are more than one such states, we can select any of them; the 
consecutive states will be considered when the procedure is repeated (if at all).  
 

Satisfactory stage realizations  
Stage realizations satisfactory with respect to the given group of multistage crite-
ria are such process realizations for which the values of stage criteria are optimal 
or almost optimal in the given state. That is, their stage values are within the tol-
erance intervals given by the decision maker.  

We solve the problem for the consecutive stages, starting with the first stage. 
At any given stage, we consider all the criteria groups consecutively, according 
to the hierarchy determined by the decision maker, starting with the group of the 
most important criteria.  

When considering a given group of stage criteria, we take into account all 
stage decisions admissible for the given process state. We ask the decision maker 
to give a preliminary tolerance interval for the maximum values for all the stage 
criteria from the criteria group under consideration. As the initial set of satisfac-
tory realizations we take those realizations for which all the stage values are 
within the given intervals. The cardinality of this set depends on the extent to 
which the decision maker is willing to give up the optimal values for the stage 
criteria from the given group. For that reason, if the tolerance intervals deter-

∩         ∅ 
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mined by the decision maker turn out to be too narrow, we suggest than he/she 
extends them. As a result, the decision maker agrees to lower even more the re-
quirements as regards the criterion under consideration. On the other hand, if the 
cardinality of the realization set is too large, the decision maker can narrow the 
suggested tolerance interval, which guarantees better values for the criteria from 
this group in the final solution. When the decision maker accepts the tolerance 
interval, we obtain a set of realizations satisfactory with respect to the given 
group of stage criteria. This allows to consider the next most important group of 
stage criteria (if it exists).  
 

Selection of the stage decision  
When all the hierarchized criteria from each group of the consecutive hierarchy 
levels are considered in this manner, the decision maker selects the final stage 
decision from the last set of satisfactory stage realizations. To select this decision 
one can use the value of the index which characterizes the joint relative change 
of the value of the given realization with respect to the possible maximal 
changes of the individual stage criteria. A method of the construction of this in-
dex, analogous to that proposed in Trzaskalik (in press), will be presented in the 
detailed description of the algorithm. Once we know the stage decision we use 
the transfer function and determine the initial state in the next stage.  
 

Generating a satisfactory process realization  
This procedure is repeated for the consecutive stages, including the last one. The 
result is a satisfactory process realization which fulfills the decision maker’s ex-
pectations as regards the levels of the stage criteria (according to the group hier-
archy assumed). As in Trzaskalik (in press), we call this realization a satisfactory 
realization for short. It is added to the set of potential realizations, from among 
which the decision maker will make the final selection.  
 

Testing of the efficiency of the satisfactory realization  
This part of the procedure is analogous to the procedure for a single hierarchy 
described in Trzaskalik (in press). Using the procedure for efficiency testing we 
check if the generated satisfactory realization is an efficient realization. If it is 
not, we generate better efficient realizations and add them to the set of potential 
realizations, i.e., the realizations from among which the decision maker will  
select the final realization. Therefore, in the set of potential realizations we have 
a satisfactory realization and efficient realizations better than this one (if they  
exist).  
 
 
 



  T. Trzaskalik 
 

 

176 

Generating the consecutive satisfactory realizations 
This procedure fragment is analogous to the one described in Trzaskalik (in 
press). The decision maker performs a preliminary analysis of the set of potential 
realizations; he/she can decide that this set suffices to make the final decision 
(which is to indicate one of the potential realizations as the final realization) or 
else may conclude that it is necessary to extend the set of potential realizations 
by repeating the entire procedure, taking as the initial state of the process one of 
the states not yet considered.  
 

Selection of the final realization  
If the decision maker does not see the need to expand the set of potential realiza-
tions, then he/she uses expert knowledge to analyze in detail (jointly with an 
analyst) the values of the stage and multistage criteria of all the potential realiza-
tions generated. As a result, the decision maker can select as the final decision 
that satisfactory realization which is at the same time an efficient one (if it exists, 
of course). As the final realization, the decision maker can also select a satisfac-
tory realization which is not efficient or else an efficient realization which is not 
satisfactory. 

 Below is a detailed description of the algorithm proposed.  
 

Algorithm  
Step 1. The decision maker determines a group hierarchy of stage criteria for 
each stage; this hierarchy is described in detail in the previous subsection.  
Step 2. Denote by DP the set of potential realizations and set DP = ∅. 
Step 3. Consider stage criteria from group K1

1. These are criteria F1
j with j ∈ I1. 

The set Y1 of states for the first stage is finite. Assume that it consists of N ele-
ments which can be written as the following sequence:  

Y1 = {y1
(1), y1

(2), …, y1
(N)} 

For each stage criterion F1
j from set K1

1 calculate the maximum value:  
( )111

11

dFF j

d

j*

D∈
= max

 
For all stage realizations d1 from set D1 calculate the normalized values:  

( ) ( )
*j

j
j

F
dFdf

1

11
11 =

 
For the consecutive stage criteria from set K1

1 and for the consecutive initial 
states for Stage 1, that is for y1

(n)∈Y1 calculate:  
( )( ) ( )( )

( )( )
∑

∈

=
nyx

njnj x,yfyS
111

1111
X  

 

(11) 
 
 
 

(12) 
 
 
(13) 
 
 
 
 
(14) 
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For the consecutive initial states for Stage 1, sum up the normalized values for 
all stage criteria from set K1

1:  
( )( ) ( )( )∑

∈

=
1
1

1
Ij

njn ySyS
 

As the initial state select state y1
(p), for which the sum S(y1

(p)) is largest.  
If the decision maker does not accept this proposal, ask him/her to indicate the 
preferred initial state.  
Step 4. Set t = 1. 
Step 5. Set yt = y(p). 
Step 6. Set Dt = Dt(yp).  
Step 7. Set i = 1.  

Step 8. Set I = It
i. 

Step 9. If I = ∅, go to Step 13. 
Step 10. Select j∈I, set I = I \ {j}.  
Step 11. Find stage process realization dt

j*(yt) ∈ Dt, for which stage criterion Ft
j 

has its maximum value Ft
j*.  

Step 12. Inform the decision maker what the value of Ft
j* is and ask him/her to 

give the value εt
j which determines the tolerance interval [Ft

j* – εt
j, Ft*] for the 

criterion under consideration.  
Step 13. Select those stage realizations from set Dt for which criterion Ft

j attains 
a value from the interval [Ft

j* – εt
k, Ft

j*]. Denote the set of these stage realiza-
tions by Dt

(j). Return to Step 9.  
Step 14. Find the intersection of sets Dt

(j):  
( )j
t

Ij

i
t DD

i
t∈

= I  

Step 15. Inform the decision maker about the cardinality of the set obtained and 
ask for approval. If the decision maker accepts this cardinality, go to Step 17.  
Step 16. If the decision maker finds this cardinality too large or too small, ask 
him/her to repeat the analysis of set Kt

i. Return to Step 8.  
Step 17. Check if i = it. If so, go to Step 19.  
Step 18. Set Dt = Dt

i, and i = i + 1. Return to Step 8.  
Step 19. Select the preferred stage realization from the reduced set Dt of realiza-
tions as described below. Check if there are dominated stage realizations in set 
Dt. If so, delete them. Assume that D’ has cardinality Pt’. For each stage realiza-
tion dt

(p) ∈ Dt’ calculate the coefficient fpk for the consecutive criteria, by dividing 
Ft

k(dt
(p)) by the largest obtainable value of stage criterion Ft

k in ti
tD . We obtain:  

( )
( )t

k

Dd

p
t

k
t

pk dF
dFf

'

)(

max
∈

=  

(15) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(16) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(17) 
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Form matrix F = [fpk] of size P’× K with these values. As the stage decision, 
suggest to take that decision numbered po for which the sum of the elements of 
the corresponding row in matrix F is largest.  
If the decision maker does not accept this suggestion, he/she should perform the 
selection independently, by analyzing the values of matrix F.  
Step 20. Check if t = T. If so, go to Step 23.  
Step 21. Using the transfer function, determine the process state at the end of the 
stage. This state is at the same the initial state for the next stage. We have:  

yt+1 = Ωt(yt, xt) 
Step 22. Set t = t + 1, yt = yt+1, Dt = Dt(yt) and go to Step 7.  
Step 23. Let do be the process realization obtained. Add do to the set DP of poten-
tial realizations.  

DP = DP∪{do} 
Step 24. Using the algorithm for efficiency testing, check if the generated reali-
zation is efficient. If not, generate the set D*(y*) of efficient realizations better 
than the realization obtained.  
Step 25. Add the realizations from set D*(y*) (if any) to set DP of potential re-
alizations. 

DP:= DP ∪ D*(y*) 
Step 26. Ask the decision maker to perform a preliminary analysis of set Dp. Ask 
the decision maker if he/she want to extend this set by repeating the procedure to 
obtain another satisfactory realization. If not, go to Step 28.  
Step 27. Ask the decision maker to indicate as the next initial state a state not 
previously considered. Go to Step 3.  
Step 28. The decision maker, using expert knowledge, analyzes the set of poten-
tial decision, taking into account the stage hierarchy and the value of the stage 
and multistage criteria. As a result, the decision maker: 
a)  indicates one of the potential realizations as the final realization,  
b)  repeats the procedure starting with Step 2, obtaining a new potential realization,  
c)  eliminates certain realizations obtained previously from the set of potential 

realizations,  
d)  changes the stage hierarchy and repeats the entire procedure,  
e)  gives up making the decision using the procedure described above.  
 
5 Numerical example  
 

We consider a two-stage decision process in which the transfer function is of the form:  
yt+1

(j) = Ωt(yt
(i), xt

(j)) = xt
(j) 

that is, the decision consists in the selection of the initial state for the next stage.  

(18) 
 
 

 
 

(19) 
 
 
 

 
(20) 
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 We denote stage realization dt
ij, which begins in state yt

(i), when decision xt
(j) 

is taken, as follows:  
dt

ij = (yt
(i), xt

(j)) 
The values of the stage criteria, the same in both stages, are shown in Tables 1-3.  
 

Table 1: Values of stage criteria Ft
1 (t = 1, 2) 

 

 Decision 0 1 2 3 4 5 6 7 8 9 
State 0 420 451 433 494 462 400 455 459 438 452 

 1 443 417 499 429 486 498 438 494 424 436 
 2 429 490 491 434 494 484 420 480 458 482 
 3 430 489 413 492 488 434 487 423 482 496 
 4 414 407 418 409 460 456 454 452 419 446 
 5 454 489 409 454 416 413 439 441 434 492 
 6 455 462 427 483 460 437 456 493 468 436 
 7 438 439 494 449 446 422 491 437 425 455 
 8 490 418 449 410 429 454 439 422 434 438 
 9 437 424 447 497 433 480 488 464 406 492 

 
Table 2: Values of stage criteria Ft

2 (t = 1, 2) 
 

 Decision 0 1 2 3 4 5 6 7 8 9 
State 0 69 66 69 59 54 64 55 63 58 60 

 1 59 55 63 62 53 67 61 65 62 69 
 2 57 63 65 54 55 52 56 59 69 61 
 3 52 67 61 61 69 59 65 51 52 69 
 4 68 52 64 56 56 62 67 66 67 61 
 5 53 65 69 63 68 50 50 58 64 54 
 6 58 58 65 52 69 61 57 54 56 57 
 7 51 56 63 58 52 53 52 60 53 62 
 8 52 58 69 51 50 50 56 51 55 54 
 9 60 63 60 52 51 53 69 59 63 53 

 
Table 3: Values of stage criteria Ft

3 (t = 1, 2) 
 

 Decision 0 1 2 3 4 5 6 7 8 9 
State 0 153 162 177 180 182 189 182 178 189 157 

 1 152 175 151 156 176 179 161 153 170 166 
 2 186 175 168 176 174 173 175 152 188 151 
 3 189 152 167 159 162 189 157 159 150 190 
 4 180 177 158 176 186 158 170 172 172 180 
 5 172 172 155 167 153 174 178 160 179 158 
 6 162 156 172 186 180 157 155 150 172 162 
 7 151 170 167 169 173 168 174 159 150 154 
 8 159 158 165 154 155 171 152 185 165 162 
 9 176 153 190 164 150 180 161 155 166 159 
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We proceed to show an application of the procedure proposed.  
Step 1. The decision maker provides a group hierarchy of stage criteria for the 
consecutive stages. We have: K1

1 = {F1
1, F1

2}, K1
2 = (F1

3}, K2
1 = {F2

3},  
K2

2 = {F2
1, F2

2}, I1
1 = {1, 2}, I1

2 = {3}, I2
1 = {3}, I2

2 = {1, 2}.  
Step 2. Set DP = ∅.  
Selection of the initial state 
Step 3. The decision maker accepted the proposed selection of the initial state, 
presented in the description of the algorithm. The detailed calculations are 
shown in the appendix. As the initial state we take y1

(2).  
Stage 1 
Step 4. Set t = 1.  
Step 5. Set yt = y1

(p).  
Step 6. Set Dt = Dt(yt

(p)).  
Step 7. Set i = 1.  

First group of criteria  
Step 8. Set I = I1

1 = {1, 2}. 
Step 9. We have I ≠ ∅.  
Step 10. Select j = 1, set I = I \ {1} = 2.  
Step 11. Criterion F1

1 has its maximum value for stage realization d1
24. We have 

F1
1*(d24) = 494. 

Step 12. The decision maker determined ε1
1 = 49, hence the tolerance interval 

for criterion F1
1 is [445, 494].  

Step 13. The following realizations are in the interval determined by the deci-
sion maker:  

D1
(1) = {d1

21, d1
22, d1

24, d1
25, d1

27, d1
28, d1

29}. 
Step 9. We have I ≠ ∅.  
Step 10. Select j = 2, set I = I \ {2} = ∅.  
Step 11. Criterion F1

2 has its maximum value for stage realization d28. We have 
F1

2*(d28) = 69.  
Step 12. The decision maker determined ε1

2 = 9, hence the tolerance interval for 
criterion F1

1 is [60, 69].  
Step 13. In the interval determined by the decision maker there are realizations 
from the set:  

D1
(2) = {d1

21, d1
22, d1

28, d1
29} 

Step 9. Since I = ∅, go to Step 12.  
Step 14. Find the set:  

D1
1:= D1

(1) ∩ D1
(2) = {{d1

22, d1
28 d1

29} 
Step 15. The decision maker accepts the cardinality of set D1

1.  
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Second group of criteria  
Step 17. Set i = i + 1 = 2. We have i = 2 ≤ 2 = i2. 
Step 18. Set Dt = D1

1.  
Step 8. Set I = I1

2 = {3}. 
Step 9. We have I ≠ ∅.  
Step 10. Select j = 3, set I = I \ {3} = ∅.  
Step 11. Criterion F1

3 has its maximum value on set D1 for stage realization d28. 
We have F1

3*(d28) = 188.  
Step 12. The decision maker determined ε1

3 = 18, hence the tolerance interval 
for criterion F1

3 is [170, 188].  
Step 13. In the interval determined by the decision maker there are realizations 
from the set: 

D1
(2) = {d1

22, d28} 
Step 9. We have I = ∅.  
Step 14. Find:  

D1
2 := D1

(3) = {d1
22, d1

28} 
Step 15. The decision maker accepts the cardinality of set D1

2.  
Step 17. We have i = 2 = i2. 
Selection of the stage realization 
Step 19. Compare the values of the stage criteria for the stage realizations from 
set D2. We have:  
F1

1(d22) = 491,   F1
1(d22) = 65,   F1

1(d22) = 168  
F1

1(d28) = 458,   F1
1(d28) = 69    F1

1(d28) = 188  
Create the matrix:  
  1          0,942      0,0897 
  0,923     1            1 
The sums of the elements are: for d22 = 2,839, for d28 = 2,923. Select d28.  
Step 20. We have: t = 1 < T.  
Step 21. We have: y2 = Ω1(d28) = y2

(8)   
Step 22. Set t = 1 + 1 = 2, yt = yt+1, D2 = D2(y2

(8)) and go to Step 7.  
Stage 2  
First group of criteria  
Step 7. Set i = 1.  

Step 8. Set I = I2
1 = {3}.  

Step 9. We have I ≠ ∅.  
Step 10. Select j = 3, set I = I ⁄ {3} = ∅.  
Step 11. Stage criterion F2

3 has its maximum value for stage realization d2
87. We 

have F2
3*(y(8)) = 185 for x2

7 ∈ X1(y(2)).  
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Step 12. The decision maker determined ε1
1 = 15, hence the tolerance interval 

for criterion F2
3 is [170, 185].  

Step 13. The following realizations are in the interval determined by the deci-
sion maker:  

D2
(3) = {d2

85, d1
87}. 

Step 9. We have I = ∅.  
Step 14. Find the set: 

D1
2:= D1

(3) = {{d1
22, d1

28} 
Step 15. The decision maker does not accept the cardinality of set D1

2 and sug-
gests that it be extended. Set I = I2

1 = {3} and return to Step 9.  
Extension of set D1

2 

Step 9. We have I ≠ ∅.  
Step 10. Select j = 3, set I = I ⁄ {3} = ∅.  
Step 11. Criterion F1

1 has its maximum value for stage realization d2
87. We have 

F2
3*(y(8)) = 185 for x2

7 ∈X1(y(2) ).  
Step 12. The decision maker determined ε1

1 = 25, hence the tolerance interval 
for criterion F2

3 is [160, 185].  
Step 13. The following realizations are in the interval determined by the deci-
sion maker:  

D2
(3) = {d2

82, d2
85, d1

87, d2
88, d2

89} 
Step 9. We have I = ∅.  
Step 14. Find the set:  

D2
2:= D1

(3) = {d2
82, d2

85, d1
87, d2

88, d2
89} 

Step 15. The decision maker accept the cardinality of set D1
2.  

Second group of criteria  
Step 17. We have i = 1 < it.  
Step 18. Set Dt = Dt

1, i = i + 1.  
Step 8. Set I = I2

2 = {1, 2}.  
Step 9. We have I ≠ ∅. 
Step 10. Select j = 1, set I = I ⁄ {1} = {2}.  
Step 11. Criterion F2

1 has its maximum value for stage realization d2
85. We have 

F2
1*(y(8)) = 454 for x2

5 ∈X2(y2
(8)). 

Step 12. The decision maker sets ε2
1 = 20. The tolerance interval is [434, 454].  

Step 13. Determine the stage realizations which fall within the given tolerance 
interval. We have:  

D2
(1) = {d2

82, d2
85, d2

88, d2
89} 

Step 9. We have I ≠ ∅.  
Step 10. Select j = 2, set I = I ⁄ {2} = ∅.  



                              A Solving Procedure for the Multiobjective Dynamic Problem… 
 

 

183 

Step 11. Criterion F2
2 has its maximum value for stage realization d2

82. We have 
F2

1*(y(8)) = 69 for x2
5∈X2(y2

(8)). 
Step 12. The decision maker sets ε2

1 = 7. The tolerance interval is [62, 69].  
Step 13. Determine the stage realizations which fall within the given tolerance 
interval. We have: 

D2
(2) = {d2

82} 
Step 9. We have I = ∅.  
Step 14. Find the intersection of sets Dt

(j):  
D2

2 = D2
(1) ∩ D2

(2) = {d2
82} 

Step 15. The decision maker accept the cardinality of this set.  
Step 17. Set i = 2 = i2.  
Selection of the stage realization  
Step 19. Since D2

2 has one element only, the preferred stage realization is d2
82.  

Generating a satisfactory process realization 
Step 20. We have t = 2 = T. 
Step 23. Add the generated process realization d282 = (d1

28, d2
82) to the set of po-

tential realizations. We have:  
DP = DP ∪ {d282} = {d282} 

Testing the efficiency of the satisfactory realization 
Step 24. Using the algorithm of efficiency testing, check that the generated re-
alization is efficient.  
Selection of the final realization  
Step 26. The decision maker does not want to extend the set DP of potential re-
alizations. 
Step 28. The decision maker indicates d282 as the final realization.  
 
6 Summary  
 

The interactive procedure proposed in this paper allows to include the decision 
maker into the process of solving the problem. Of fundamental importance is here 
the decision maker’s (or the advisory team’s) expert knowledge. The key theoreti-
cal aspect of the proposed procedure is the use of the algorithm for testing the effi-
ciency of the potential realizations generated at each stage and, related to this, the 
possibility of generating better efficient realizations (if they exist) and of perform-
ing appropriate comparisons. Such a situation did not occur in the presented exam-
ple because the potential realization generated as a result of the algorithm turned 
out to be efficient, but it occurred in the numerical example in Trzaskalik (in press), 
which can be a model for such situations. The selection of the final realization is 
then performed using the decision maker’s expert knowledge. 
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Further research should take into account numerical aspects of the proposed 
solutions, both for single hierarchy and for group hierarchy, discussed in the pre-
sent paper. For this purpose one should perform simulations with randomly gen-
erated criteria values. Taking into account the significant number of the neces-
sary courses of action, one should discuss the possibility of determining the 
proposed rules of behavior for the decision maker in the situations when he/she 
makes decisions and of automating these decisions.  

Another direction of theoretical research should deal with extending the hier-
archical approach to stochastic and fuzzy decision processes.  
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