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Abstract 
 

A new fuzzy measure is presented in this paper. Using the assumption that 
the decision maker is able to provide the pairwise additivity degree between 
attributes, our method uses Zimmerman’s approach to solve the fuzzy multi-
objective problem: a simple problem for computing fuzzy density is derived. 
Having done that, we use this new fuzzy measure to implement an analytic 
hierarchy process (AHP) with dependent attributes using the Choquet inte-
gral. Our identification procedure for fuzzy density is much easier because it 
reduces the resolution complexity using a linear programming problem rather 
than the complicated power form used traditionally. 

 

Keywords: fuzzy measure, Choquet integral, linear programming problem, AHP. 
 
1 Introduction 
 

Several methods have been proposed for fuzzy measures. However, the identifi-
cation of a fuzzy measure could be the most difficult step when fuzzy integrals 
are applied to solve MCDM problems, because 2n – 2 values of the fuzzy meas-
ure have to be provided by the decision-maker(s) for an MCDM problem with n 
criteria (Larbani, Huang, Tzeng, 2011). In earlier reviews by Grabisch (1995), 
Grabisch et al. (2008), Grabisch and Labreuche (2010), the identification meth-
ods are classified into three groups: semantic methods (guessing the fuzzy meas-
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ure on the basis of semantic considerations), learning methods (optimization 
methods) and methods combining semantic and learning methods. In addition, 
the main approaches (least square, minimum split and minimum variance) to 
fuzzy measure identification based on the Möbius transform of capacity and  
k-additivity are reviewed and their advantages and disadvantages are discussed. 
The least square method is historically the first approach; it can be regarded as  
a generalization of the classic multiple linear regression. The goal is to minimize 
the average quadratic distance between the overall utilities computed by means 
of the Choquet integral and the desired overall scores provided by the decision-
maker(s). However, the objective function is not strictly convex so that the solu-
tion is not unique. The maximum split method is based on linear programming; the 
idea of this approach is to maximize the minimal difference between the overall 
utilities of objects that have been ranked by the decision-maker(s) using partial 
weak order. This method is quite simple; but, similarly, it does not have a unique 
solution. The idea of the minimum variance method is to favor the “least specific” 
capacity, if any, compatible with the initial preferences of the decision-maker (s). 
It may lead to a unique solution; however, a unique solution doesn’t exist if there 
are “poor” initial preferences; for example, if the decision maker faces very high 
positive or negative interaction indices or a very uneven Shapley value.  

Since computing the fuzzy density of a fuzzy measure is complicated by its 
power form, many scholars tried their best to simplify this problem. For exam-
ple, Lee and Leekwang (1995) developed an identification method for fuzzy 
measures based on evolutionary algorithms. Wang and Chen (2005) used the 
sampling method with genetic algorithm, the complexity reduced to the data 
number of O(2n/n). Takahagi (2000) proposed an approach based on two types of 
pairwise comparison. The first one is based on the pairwise comparison values 
of interaction degrees between criteria. The second one is based on the pairwise 
comparison values of weights of criteria. Thus, the complexity of data collection 
can be reduced to n(n − 1). In addition, Corrente et al. (2016) showed that the 
application of the Choquet integral presenting two main problems for the neces-
sity to determine the capacity, which is the function that assigns a weight not 
only to all single criteria but also to all subset of criteria, and the necessity to ex-
press on the same scale evaluations on different criteria. They adopted the re-
cently introduced Non-Additive Robust Ordinal Regression (Greco et al., 2010) 
for the first problem, which takes into account all the capacities compatible with 
the preference information provided by the DM; with respect to the second one 
they build the common scale for the considered criteria using the Analytic Hier-
archy Process (AHP). This permits to reduce considerably the number of pair-
wise comparisons usually required by the DM when applying the AHP. 
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The Analytic Hierarchy Process (AHP) is an effective tool for selecting the 
best alternative in multiple criteria decision making (MCDM) (Liou, Tzeng, 
2007; Saaty, 1980; Tzeng et al., 2005; Yang et al., 2008). In multiple criteria de-
cision making (MCDM) fuzzy measures are used to represent interactions be-
tween the attributes (Chen, 2001; Chen, Larbani, 2006; Chen, Tzeng, 2001); 
namely, the aspects of independence, complementarity and redundancy of attrib-
utes, which are also the challenges of the AHP (Bortot, Marques Pereira, 2013). 
Our method of identification is very easy to implement because the optimization 
problem we solve is linear and the number of its constraints is small compared 
with the optimization problems in methods cited above.  

Our paper is organized as follows: in Section 2, the definitions of a fuzzy 
measure and λ-fuzzy measure are reviewed. In Section 3, the new fuzzy measure 
is presented and defined. In Section 4, we propose the Choquet integral AHP 
which uses the new fuzzy measure. In Section 5, a numerical example is used to 
illustrate our results. Finally, conclusions and recommendations are in Section 6. 
 
2 Overview of the literature 
 

In this section we will review basic definitions and concepts of fuzzy measure, 
Choquet integral and AHP. 
 
2.1 Fuzzy measure  
 

Sugeno (1974) presented a theory of fuzzy measures and fuzzy integrals in mod-
eling the human subjective evaluation process (Ishii, Sugeno, 1985; Kambara et 
al., 1997).  
 

Definition 2.1 (Sugeno, 1974). Let g be a set function defined on the power set 
β(X) of X, and satisfying the following properties:  
 

Property 1. Boundary conditions: 
g : β(X)→[0,1]  
g(φ) = 0 and g(X) = 1 
 

Property 2. Monotonicity:  
∀A, B∈β(X) if A⊆B, then g(A ) ≤ g(B)  
 

Property 3. Continuity: 
If Fk∈β(X) for 1 ≤ k < +∞, and the sequence {Fk} is monotone (in the sense of 
inclusion), then imk→+∞ g(Fk) = g(limk→+∞Fk). 
It has to be noted that if X is finite then property 3 can be omitted. 
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The following are three special fuzzy measures; each measure is defined by 
certain constraints on g.  
(a) Probability measure: 

A, B∈β (X) and A∩B = φ→g(A∪B) = g(A) + g(B)  
(b) F-additive measure: 

A, B∈β (X) and A∩B = φ→g(A∪B) = g(A) ∨ g(B) 
where a∨b= max {a,b} 

(c) λ-measure: 
A, B∈β (X) and A∩B = φ→g(A∪B) = g(A) + g(B) + λg(A)g(B) 

where λ∈(–1,∞].  
Sugeno constructed the λ-measure as a special case of a fuzzy measure. Here, 

the measure is based on the parameter λ, which describes the degree of additiv-
ity. We have three important types of λ-measures. 
1)  if λ > 0, then gλ(A∪B) > gλ(A) + gλ(B), the measure is superior additive, 

which implies multiplicative effects between A and B; 
2)  if λ = 0, then gλ(A∪B) = gλ(A) + gλ(B), the measure is additive;  
3)  if λ < 0, then gλ(A∪B) < gλ(A) + gλ(B), the measure is subadditive, which im-

plies substitutive effects between A and B. 
If X = {x1, x2,…, xn} i.e. X is finite, the fuzzy measure can be written as 

(Sugeno, 1974):  

gλ({x1, x2,…, xn}) = ∑
=

n

i 1
gi + λ∑ ∑

−

= +=

1

11 112

n

i

n

ii
 gi1gi2 + … + λn−1 g1g2…gn =  

= λ
λ ∏

=

+
n

i 1
1(|1  gi) – 1| , for –1 < λ < ∞ 

where gi = gλ({xi}), i = 1..n, define the fuzzy density of the fuzzy measure gλ. 
The power form is inspired by the utility function of Keeney and Raiffa (1976). 
 
2.2 The Choquet integral 
 
Consider a fuzzy measure space (X, β (X), g) with X = {x1, x2, …, xn}. The Cho-
quet integral of a function h: X→ [0,1] with respect to g is defined as follows 
(Yang et al., 2008; Sugeno, 1974): 

( ) ( ) ( ) ( )[ ]jj

n

j
X

HgxhHgXh ∧∨=•
=∫ 1

 
where h(xj) ≥ h(xj+1) for 1 ≤ j ≤ n − 1, a ∧ b = min{a,b} and Hj = {x1, x2, …,  xj},  
j = 1, 2, …, n. When the Choquet integral is used to describe an MCDM problem,  
a value of the function h can be thought of as the performance of a particular attrib-
ute for an alternative, and g represents the decision maker’s subjective evaluation of 
the importance of the attributes. The Choquet integral of h with respect to g gives the 
overall evaluation of an alternative. Furthermore, we have (Sugeno, 1974): 

(1) 
 
(2) 
 
 
(3) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(4) 
 
 
 
 
 
 
 
 
 
 
 

(5) 
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∫hdg = h(xn)g(Hn) + [h(xn−1) – h(xn)]g(Hn−1) + … + [h(x1) – h(x2)]g(H1) = 
= h(xn)[g(Hn)-g(Hn−1)] + h(xn−1)[g(Hn−1)-g(Hn−2)] +… +h(x1)g(H1)  

where H1 = {x1}, H2 = {x1, x2},…, Hn = {x1, x2, …, xn} = X. 
The basic concept of equation (6) can be illustrated as shown in Figure 1. 
 

 
 

Figure 1. The Choquet integral 
 

The Choquet integral is a powerful tool to measure the subjective human 
evaluation (Ishii, Sugeno, 1985; Kambara et al., 1997). The main reason for that 
is that it is not necessary to assume the independence between the attributes in 
the Choquet integral model.  
 
2.3 The Analytic Hierarchy Process (AHP) 
 

Saaty (1980) introduced a method of computing relative weights using a positive 
pairwise comparison matrix using the eigenvector method: let P be the positive 
pairwise comparison matrix with respect to n attributes: 
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where 
b

a

w
w

 represents the relative importance of the a-th attribute over the b-th 

attribute, where a, b∈{1, 2, …, n}. Multiplying P by the relative importance 
vector: W = (w1, w2, …, wn)t, we get the following equation: 
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In general, the value of 
b

a

w
w

 is subjectively given by the decision maker. Saaty 

(1980) uses the maximal eigenvalue: EVmax to find the solution W of equation 
(8) as shown in the following equation:  

(P – EVmax I )W = 0 
where I is the identity matrix. A set of linear equations for w1, w2, …, wn can be 
obtained from equation (9); the final values of w1, w2, …, wn are computed using 
the normalization condition: 

w1 + w2 + … + wn = 1 
 
3 A new fuzzy measure with variable additivity degree  
 

In this section we propose a generalization of the λ-measure (Larbani et al., 
2011). When the degree of additivity λ depends on the sets considered i.e.:  

A, B∈β(X) and A∩B = φ→g(A∪B) = g(A) + g(B) + λAB 

where β(X) is the set of all subsets of a set X = {x1, x2, …, xn} of attributes and 
λAB is the additivity degree between subsets A and B.  
 

Procedure 3.1  
 

Step 1. Assume that the decision maker is able to provide a pairwise evaluation 
of the interdependence of the attributes, i.e. for each pair of different attributes  
i and j the decision maker is able to assign/guess their additivity degree λij with 
–1 ≤ λij ≤ 1 and 0 ≤ maxλij ≤ 1. Here λij plays the role of the correlation coeffi-
cient in the traditional statistics. Actually, this is a simple idea if we trace it back 
to the traditional statistics. In the traditional statistics, a positive correlation 
means that the two variables are synergistic: An increasing effect of one variable 

(8) 
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(10) 
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leads to a similarly increasing effect of another; conversely, a negative correla-
tion means that the two variables may be substitutive. The decision maker is en-
couraged to determine these λij by his/her arbitrary perception. 
 

Step 2. The decision maker can give only one fuzzy estimation of the value of 
the density gi for each attribute xi. Without loss of generality and for the ease of 
presentation, we assume that the decision maker’s fuzzy estimation of each den-
sity gi is a fuzzy value number ig~ = [ai,bi], with 0 ≤ ai ≤ bi ≤ 1. It should be 
noted here that the decision maker has the freedom to choose ai,bi according to 
his/her experience and knowledge about the given attribute. Here we assume  
gi = (1 − α)ai + αbi, 0 ≤ α ≤ 1. Therefore density gi, i = 1, …, n of the fuzzy 
measure can be determined by solving the following optimization problem:  

Max (g1, g2, …, gn) 
such that 0 ≤ gi + gj + λij ≤ 1, for all i, j with i ≠ j: 

ij

n

ji
njiig λ∑

≠
∈

+
1 },..1{,

max = 1 

gi = (1 − α)ai + αbi, i = 1, …, n. 
where α represents the achievement level of the fuzzy numbers ig~ , i = 1, …, n, 
the larger the better. In fact, any density that satisfies the constraints of problem 
(11) can be taken as a feasible solution; however, we look for the maximal value 
of the objective function in this problem. Now the fuzzy measure can be deter-
mined on the basis of the density obtained from problem (11). When the fuzzy 
multi-objective approach of Zimmerman (1985) is applied, problem (11) can be 
reduced to problem (12): 

Max α 
such that 0 ≤ gi + gj + λij ≤ 1, for all i, j with i ≠ j: 

ij

n

ji
njiig λ∑

≠
∈

+
1 },..1{,

max = 1
 

gi = (1−α)ai + αbi, i = 1, …, n. 
 

Proposition 3.1. The set function defined by: 
g(A) =

 
∑
∈ ≠

∈
+

Ai
ij

ji
Ajiig λ

,
max

 
for all subsets of X such that Card(A) ≥ 2 and g(∅) = 0, is a fuzzy measure. 
 

Proof. By construction we have g(∅) = 0 and g(X) = 1. Let us now prove that 
given two subsets A and B of X such that A ⊂ B, we have g(A) ≤ g(B). Since  
A ⊂ B, we have:  

(11) 
 
 
 
 
 
 
 
 
 
 
 
 
 
(12) 
 
 
 
 
(13) 
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Adding these two inequalities we get:  
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Now it remains to prove that for any subset A of X we have 0 ≤ g(A) ≤ 1. If A has 
one or two elements, the inequality 0 ≤ g(A) ≤ 1 holds according to the con-
straints of problem (11). Assume now that A has more than three elements. Let 
{i, j} be any two elements in A; then, according to the first part of this proof, we 
have:  

g(A) ≥ g({i, j}) = gi + gj + λij ≥ 0 
On the other hand, we have A ⊂ X, therefore g(A) ≤ g(X) = 1, hence g(A) ≤ 1. 
Given two subsets A and B of X such that A ∩ B = ∅, we have:  
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Hence A and B are independent if and only if the degree of additivity in A ∪ B is 
equal to the sum of degrees of additivity within A and within B, that is: 

A and B are independent ⇔
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To summarize we give a procedure for an effective implementation of our 
method of identification. 
 

Procedure 3.2 
 

Step 1. Ask the decision maker to provide/guess the pairwise degrees of additivity 
λij, if attribute i and attribute j are mutually substitutive then λij should be less 
than zero; while if attribute i and attribute j are mutually complementary then λij 
should be larger than zero, and the fuzzy evaluations of the density are ig~ ,  
i = 1, …, n of attributes. 
 

Step 2. Solve problem (12). If it has no solution then return to Step 1. The deci-
sion maker has to enlarge the interval of fuzzy evaluations ig~ , i = 1, …, n 
or/and reevaluate the additivity values λij. If (12) has a solution, go to Step 3.  
 

Step 3. Let gi, i = 1, …, n be the solution of problem (12) with the largest α, then 
identify the fuzzy measure by formula (13).  
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4 The Choquet Integral AHP of the new fuzzy measure 
 
In this section we will compare the results from the traditional AHP (Zeleny, 1982) 
and the Choquet Integral AHP with the new fuzzy measure. Assume now that the 
traditional AHP pairwise comparison matrix P in (7) is given. The Choquet Integral 
AHP is defined by the triplet (X, P, gi), where X is the set of attributes, P is the 
pairwise comparison matrix and gi is the computed fuzzy density. Now we will show 
how the attribute weights are calculated in the Choquet Integral AHP. We will use 
the Choquet Integral to calculate the new weights of the attributes in order to take 
into account the interdependence of attributes. Let us assume, for the time being, that 
the λ-fuzzy measure g describing the interdependence of attributes is known 
(identification will be performed in the next section). Let wi represent the normalized 
weight of attribute i from (10) and let h(xi) = wi. Let H1 = {x1}, H2 = {x1, x2},…,  
Hn = {x1, x2,…, xn} = X and h(x1) ≥ h(x2) ≥ … ≥ h(xn). If this ordering does not hold, 
one can reorder the attributes accordingly. Assume for the time being that the  
λ-fuzzy measure g is known. Now, according to (6) we have:  

∫hdg = h(xn)[g(Hn) – g(Hn−1)] + h(xn−1)[g(Hn−1) – g(Hn−2)] + … + h(x1)g(H1) 
Let us consider the vector Wf = ( fw1 , fw2 ,…, f

nw ) with the following compo-
nents (Chen, 2001): 

fw1  = h(x1)g(H1) 
fw2  = h(x2) [g(H2) – g(H1)] 

M  
f

nw  = h(xn) [g(Hn) – g(Hn−1)] 
This Choquet Integral gives an aggregated evaluation of the effect of interde-
pendence of the attributes on the weights h(xi) = wi, i = n,1  given by the tradi-
tional AHP where attributes are assumed to be independent. It is then natural to 
write the new weight of any attribute i as h(xi)[g(Hi) – g(Hi−1)] based on the 
Choquet Integral (6); that is, as the corresponding term in the Choquet Integral. 
Furthermore, the coefficient [g(Hi) – g(Hi−1)] can be interpreted as the effect of 
the interdependence of the attributes on the weight h(xi) = wi of attribute i. 
 

Definition 4.1. We define the vector W f ′ = ( fw ′
1 , fw ′

2 ,…, f
nw ′ ) of weight attributes 

in the Choquet Integral AHP as the normalized vector of Wf. Thus, we have:  
fw ′

1 + fw ′
2 +…+ f

nw ′ = 1 

where f
iw ′ = 

∑
=

n

j

f
j

f
i

w

w

1

, i = 1, …, n. 

(14) 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
(15) 
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Now, we will use a numerical example to show how our ideas work. We use 
Procedures 3.1 and 3.2 to compute each gi, then apply equations (14)-(15) to get 
our modified weights.  
 
5 A numerical example 
 

Here we propose two applications of our new fuzzy measure. The first one con-
sists in adjusting the weights in the traditional AHP, the second one, in finding 
the dependency (λij) in a decision process.  

Consider the following management problem: an enterprise always faces 
many negative impacts (factors), which could lead to a reduction in productivity. 
For example, decreased productivity may result from improper human resource 
management, financial management, management of technology (MOT), opera-
tions management, etc. However, since the available resources: time and money 
are limited when tackling the negative impacts (factors) of an enterprise, the 
manager wants to rank these possible causes of decreased productivity; the cause 
with the highest priority could be tackled first.  
 

Table 1: Comparison matrix with respect to three causes 
 

b

a

w
w

 

Poor management 
of human resources 

(IHR) 

Poor management 
of innovative  

technologies (IIT) 

Poor management  
of manufacturing  
operations (IMO) 

Poor management of human  
resources (IHR) 

1 
3
1

 2
1

 
Poor management of innovative 
technologies (IIT) 

3 1 3 

Poor management of manufacturing 
operations (IMO) 

2 
3
1

 
1 

 

Assuming that a manager finds three possible causes of decrease in produc-
tivity in an enterprise, namely: poor management of human resources (IHR), 
poor management of innovative technologies (IIT) and poor management of 
manufacturing operations (IMO). The pairwise comparison matrix with respect 
to these three causes is shown in Table 1; the AHP is used to rank them. How-
ever, they are correlated with each other in practice. For example, IHR and IIT 
could happen at the same time and have an adverse effect on the enterprise – 
these two causes may have mutual multiplicative effects (0 < λ < ∞). Thus, the 
fuzzy integral AHP is applied in this example to remove this limitation of the 
traditional AHP. Two approaches: the traditional AHP and the Choquet integral 
AHP with a new fuzzy measure, are proposed and their results are compared. 
First, by applying the procedures from Section 2.3, we can obtain the weights of 
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the traditional AHP: WT3= [0.16(IHR), 0.59(IIT), 0.25(IMO)]t. Next, we assume 
λij = 1 for i = j, λij = 0.2 for i ≠ j , 0.2 ≤ g1 ≤ 0.3, 0.2 ≤ g2 ≤ 0.3 and 0.3 ≤ g3 ≤ 0.4 
to solve problem (12). Thus, we get α = 0.33, g(H1) = 0.23, g(H2) = 0.86, g(H3) = 1; 

therefore, W
f
T
′
3  = [0.08(IHR), 0.84(IIT), 0.08(IMO)]t. Comparing these two 

models, we see that the traditional AHP doesn’t have such a significant impact 
on IIT as does the Choquet integral AHP with a new fuzzy measure. In other 
words, this new model has the ability to emphasize the major cause and tends to 
ignore the less important causes.  

The actual relationship between fuzzy densities is an interesting problem, 
worth exploring further. To summarize, according to our new model, when the 
relationship between fuzzy densities is assumed, it is possible to trace back the 
hidden interaction between attributes. In addition, computational difficulties are 
reduced because our model is the linear problem (12) instead of problem (4).  
 
6 Conclusions and recommendations 
 

In the well-known traditional AHP, the relative weights from Satty (1980) define 
the core of the problem. The AHP technique is widely and commonly used to 
choose the best alternative with many competing attributes; however, the inter-
dependencies among the competing attributes are seldom considered (Bortot, 
Marques Pereira, 2013). Since the substitutive and multiplicative effects, i.e., 
additivity degrees between attributes surely influence the final decision, a proc-
ess to implement the AHP accommodating such a realistic situation should be 
developed. We successfully propose and validate a new fuzzy measure, which is 
quite simple when it is compared with the traditional fuzzy measure expressed in 
power form. The way of finding fuzzy density is also simple in this paper. 

More advanced topics should be discussed in near future, for example, what is 
the right/correct assumption of the relationship between fuzzy densities? An evolu-
tionary scheme may be useful to solve this complicated problem by arranging the 
collected data into a training set and a validation set. Furthermore, how to implement 
a large scale AHP with many levels in the real world on the basis of the results of 
this paper? And how to use the Choquet integral AHP in machine learning, knowl-
edge acquisition or data mining? Such problems are interesting.  
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