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Abstract 
 

When a shared storage system is used, the selection of locations from 
which products should be picked becomes a significant decision problem. 
Every storage location can be described using several criteria, such as:  
storage time, distance from the I/O point, degree of demand satisfaction, the 
number of other products to be picked near the analysed location, or others. 
Based on such criteria, a synthetic variable can be created to rank all these  
locations; the highest-ranking one is selected. Such a ranking is created using 
the Generalised Distance Measure (GDM); the selected locations and the 
picker’s route based on them are compared to the results obtained using the 
Taxonomic Measure of Location’s Attractiveness (TMAL). Both route length 
and picking time are compared. Also, the influence of the system of criteria 
weights within each method on the route length and the picking time is  
analysed using simulation methods. 

 

Keywords: order-picking, Generalised Distance Measure, Taxonomic Measure of Location’s 
Attractiveness, multiple-criteria decision making, simulation analysis. 
 
1 Introduction 
 
Order-picking is the most time- and cost-consuming activity in warehouse  
management, for both manual and automated systems (De Koster et al., 2007). 
Therefore, there is still room for improvement in this area, which can be done in 
three ways, by optimising storage assignment, orders batching, or routing  
methods. Every area uses different methods of improvement. Storage assignment 
can be improved, for example, by implementing class-based storage; orders 
batching, by reducing order picking time; and routing methods, by adjusting the 
method of travelling to the warehouse type. 
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There are two main methods of storing goods in a warehouse: dedicated  
storage and shared storage (Bartholdi and Heckman, 2016). Dedicated storage  
consists in storing each product in one location containing one product only. It 
enables the picker (to a certain degree, depending on the number of SKUs1 
stored in the warehouse) to easily remember storage locations and makes order 
picking relatively fast and efficient. Its main drawback is its inefficiency (the 
storing space is utilised, on the average, in about 50% (Bartholdi and Heckman, 
2016). Shared storage, on the other hand, consists in storing each product in any 
one of many locations, with many products stored in each location (Bartholdi 
and Heckman, 2016). This storage method greatly improves the utilisation of  
the storing space, but results in the products being scattered among various  
locations, often very distant from each other. Also, locations of all products 
change continually, which makes it impossible for the picker to remember them. 
It is then necessary to use a warehouse management system. 

When a shared storage system is used, the products ordered can be picked 
from many locations. The question arises: Which location should be selected to 
pick the given product? The problem remains pretty much unsolved in the literature. 
Bartholdi and Heckman (2016) mention that during order-picking, the picker can 
select the most convenient location (to reduce labour) or the least-filled locations 
(which is more labour-intensive, but frees storage space for future replenishment 
orders). Gudehus and Kotzab (2012) specified several take-out strategies for  
a product which can be accessed from more than one location: 
• FIFO – units are picked according to their arrival time to the warehouse. 
• Priority of partial units – locations with the lowest content of the product are 

accessed first, even if it increases labour. 
• Quantity adjustment (the opposite to the previous one) – the picker retrieves 

the product from the locations containing the entire requested quantity, even 
if it generates low amounts of products at these locations. 

• Taking the access unit – if the amount of the product at the given location  
exceeds or is equal to the quantity requested, the entire unit is taken after the 
excess quantity is put aside. 
There are thus several criteria relevant to the strategy of location selection 

during order picking. From the above-listed take-out strategies, we can think of 
at least two of them: storage time and the amount of product at a given location. 
However, other criteria can be also taken into account. To improve the picker’s 
travel time, we can select locations close to the I/O point2. Also, if there are 
                                                 
1  SKU (Stock Keeping Unit) – the smallest physical unit of a product. 
2  The I/O (input/output) point is the location from where the picker starts picking the products  

ordered and collects picked products. 
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many products in the order, we can select those storage locations which are  
close to each other, so that the picker can complete the order without too much 
travelling around the warehouse. Moreover, in a high-storage warehouse the 
storage level is also an important criterion. The products should be picked from 
low levels first, since the picker can reach them directly from the floor. To reach 
locations on higher levels, he/she must use a ladder or forklift; therefore,  
products from those levels should be picked next. 

All these criteria can be considered separately, partially or in their entirety. If 
the decision maker intends to consider some, or all of them, then his/her decision 
will be based on a multiple-criteria approach. There are many methods that  
support multiple-criteria decision making. In general, we deal with multiple- 
-objective mathematical programming problems, or multiple-criteria evaluation 
problems (Trzaskalik, 2015). In the former, alternatives are not explicitly known: 
there may be even an infinite number of them. Such problems are solved by 
means of a mathematical decision model. In the latter, alternatives are known; 
they are described by multiple criteria and the best one is selected by ordering 
them. For the location selection problem, multiple-criteria evaluation methods 
can be applied. The decision maker knows all the alternatives in the problem: in 
this case they are the storage locations of products ordered. Some of the many 
multiple-criteria decision analysis methods are: AHP, ANP, ELECTRE, SAW, 
COPRAS, TOPSIS. The best ones are those that allow the decision maker to 
make many decisions in a short time. They should be easily implemented  
in software and should require minimum attention from the decision maker, 
therefore such methods as SAW (Podvezko, 2011) or TOPSIS (Hwang and 
Yoon, 1981) are the most obvious choice. They both can rank the decision  
alternatives (SAW does it without creating the so-called “pattern” object, while 
TOPSIS is based on the distances from both “pattern” and “anti-pattern”). 

The present author, in his previous papers, designed a simple multiple-criteria 
decision-making technique, based on the Synthetic Measure of Development 
(Hellwig, 1968) and called the Taxonomic Measure of Location’s Attractiveness 
(Polish abbreviation TMAL) (Dmytrów, 2015). All the above-mentioned  
methods are based on Euclidean distances, which can be used only for criteria 
measured on an interval or a ratio scale. However, some criteria can be measured 
on a weaker, ordinal scale, for which Euclidean distances cannot be used. In this 
case, we can use the Generalised Distance Measure (GDM), proposed by  
Walesiak (2000). Although GDM was not meant as a multiple-criteria decision- 
-making technique, but rather as a measure for the calculation of the distance 
matrix in object classification, or as a synthetic measure of development in 
methods of linear ordering. In the latter, its application is similar to the Synthetic 
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Measure of Development, used in the TMAL method. The goal of the present 
paper is to compare GDM with TMAL as multiple-criteria decision-making 
techniques for the selection of locations in order-picking. 
 
2   Analytical methods applied 
 
2.1  Specification of decision criteria and applied systems of weights 
 

As mentioned before, to select the pick location of a product, various strategies 
can be used. In this paper, three criteria are applied: 
x1 – distance from the I/O point, 
x2 – degree of demand satisfaction, 
x3 – number of other products picked in the neighbourhood of the location  
analysed. 

The first criterion is measured in contractual units, that is, shelf width. It is 
measured on a ratio scale and has negative impact. 

The degree of demand satisfaction has positive impact. It is measured on  
a ratio scale and is calculated from the following formula: ݔଶ ൌ ൝݈ݖ , if ݖ  ݈1 if ݈  (1) ,ݖ

where l – number of units of the product picked from the location analysed and z – 
demand for the picked product. 

The third criterion – the number of other products picked in the neighbour-
hood of the location analysed – has positive impact. It is measured on a ratio 
scale and is a numerical and discrete variable. It should be mentioned here that 
the notion of a neighbourhood depends on the warehouse type. In a high-storage 
warehouse, this can be the rack. In a typical low-storage warehouse, this can be 
the racks within an aisle (which will be assumed here).  

The criteria used to create the synthetic variable to classify the alternatives 
should be weighed. There are many methods to weigh the decision criteria, 
which can be classified as statistical and formal, and expert. Statistical methods 
can be based on the variability of criteria: The higher the share of variability of 
the given criterion in the total variability, the higher weight should the criterion 
have (Kukuła, 2000). Another statistical and formal method is based on the 
Shannon entropy (Lotfi and Fallahnejad, 2010). Among expert methods is AHP, 
in which experts specify their preferences by comparing the criteria pairwise 
(Trzaskalik, 2015). The weights can also be specified purely subjectively, with 
the decision-maker deciding the importance of each criterion. In our case, seven 
combinations of weights have been analysed (see table 1). 
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Table 1: Analysed combinations of weights 
 

Combinations of weights x1 x2 x3 
C1 0.333 0.333 0.333 
C2 0.5 0.25 0.25 
C3 0.25 0.5 0.25 
C4 0.25 0.25 0.5 
C5 0.4 0.4 0.2 
C6 0.4 0.2 0.4 
C7 0.2 0.4 0.4 

 

Source: Author’s own elaboration. 
 

Combination C1, in which every criterion has the same weight, is the  
reference. In combinations C2, C3 and C4 one criterion is twice as important as 
the other two and therefore its impact on the final decision is the same as the  
total impact of the remaining two criteria. In combinations C5, C6 and C7 two 
criteria are twice as important as the remaining one. The combinations of 
weights have been selected so as to analyse how well the algorithm performs in 
each situation and whether making one or two criteria more important than the 
other(s) will improve the system’s performance. 
 
2.2  Construction of TMAL and GDM 
 

The construction of both TMAL and GDM consist of several steps, repeated for 
each product ordered. The steps for TMAL are as follows: 
• The distance from the I/O point (x1) is changed into a criterion with positive 

impact by calculating its inverse. 
• The values of all criteria are normalised. We use quotient inversion: ݖ ൌ ∑ටݔ ଶୀଵݔ ,

(2)

where xij – value of j-th criterion in i-th alternative (location). Many other 
normalisation formulas are possible (Walesiak, 2016). This formula was  
selected so as to preserve the differences in mean values and variability. 

• The maximum normalised values form the so-called “perfect alternative” or 
the pattern. 

• Euclidean distances between the pattern and each location are calculated. 
• Mean weighed distances from the pattern for all combinations of weights are 

calculated. 
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• TMAL is calculated as the complement to unity from the ratio of the mean 
weighed distance of each location from the maximum value obtained in the 
previous step. 

• TMAL values are sorted in the descending order. 
• The highest-ranking locations are selected, until the demand for each product 

is satisfied. 
The Generalised Distance Measure (GDM) is based on the generalised  

correlation coefficient, using the Pearson Product-Moment Correlation  
Coefficient and the Kendall τ correlation coefficient (Walesiak, 2011): ݀ ൌ 12 െ ∑ ܾܽݓ  ∑ ∑ ∑ܾܽୀଵ,ஷ,ୀଵୀଵ2ൣݓ ∑ ܽଶݓ ڄ ∑ ∑ ܾଶୀଵୀଵୀଵୀଵݓ ൧ଵଶ , (3)

where: 
dik − distance (similarity) measure, 
i, k, l = 1, 2, …, n − index of the alternative (location), 
j = 1, 2, …, m − index of the criterion, 
wj − weight of j-th criterion. 

For variables measured on an interval or a ratio scale, the values of a and b 
are calculated from the following formulas: 

aipj = xij − xpj for p = k, l, 
bkrj = xkj − xrj for r = i, l, 

(4)

where xij (xkj, xij) is i-th (k-th, l-th) value of j-th criterion. 
Using GDM we can calculate the distance between objects (in multivariate 

statistical analysis) or decision alternatives (in multiple-criteria decision-making 
problems). The main advantage of GDM over the most commonly used distance 
measures, such as Euclidean, Mahalanobis or Manhattan, is that it allows to use 
criteria measured on an ordinal scale. It can be used for the determination of the 
distance matrix in classification procedures or in linear ordering of objects (in 
multivariate statistical analysis) or decision alternatives (in multiple-criteria  
decision-making problems). 

The procedure of using GDM in linear ordering is as follows (Walesiak, 
2003): 
• There is no need to change the criteria with negative impact into ones with 

positive impact. 
• The values of each criterion are normalised using formula (2). 
• The so-called “perfect alternative”, or the pattern, is created. For the criteria 

with negative impact, the pattern values are the minimum values among all 
the alternatives. For the criteria with positive impact, the pattern consists of 
the maximum values among all the alternatives. 
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• The distance of each alternative (location) from the pattern is calculated using 
formula (3), applying the substitutions given by (4). 

• The values of GDM for the alternatives (locations) are sorted in the ascend-
ing order. 

• The highest-ranking locations are selected, until the demand for each product 
is satisfied. 

 
2.3  Assumptions of the simulation experiment 
 

A simulation experiment has been performed, with the following assumptions: 
• A simple, rectangular warehouse was assumed. 
• The warehouse contained 1000 locations with one main aisle and 20 aisles 

between racks. Every rack contained 25 locations. 
• The warehouse used chaotic storage system. 
• Every order consisted of ten products. 
• Every product was stored in four locations. 
• The available amounts of products in each location varied from a single unit 

to the amount that satisfied the demand twice. 
• For both TMAL and GDM and all combinations of weights, 100 orders were 

generated. 
• For every product picked, every method and every combination of weights, 

 a ranking of locations was created. 
• The highest-ranking locations were selected until the demand was satisfied. 
• Once the locations had been selected, the picker’s route was determined  

using s-shape heuristics (Le-Duc, 2005). 
• For each route, its length was measured, and the order-picking time was  

calculated. 
• The order-picking time was the sum of the picker’s travel and collection 

times. It was assumed that the time of traversing a distance unit (shelf width) 
was 2 seconds and the time of collecting the product from the location,  
10 seconds. 

• For TMAL and GDM, it was analysed, using the one-way ANOVA, whether 
both route lengths and picking times were significantly different. 

• If the null hypothesis was to be rejected, using post-hoc Tukey’s HSD test, 
pairwise comparisons were performed. 

• For every combination of weights, mean route length and order-picking time 
obtained using TMAL and GDM were compared using the paired z-test for 
independent samples. 
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3   Results of the simulation analysis 
 
3.1  Comparison of results for each combination of weights  

within each method 
 
Mean route lengths, order-picking times and results of the ANOVA for TMAL 
are presented in Table 2. 
 

Table 2: Mean route lengths, order-picking times (in minutes)  
and results of the ANOVA for TMAL 

Specification C1 C2 C3 C4 C5 C6 C7 
Route length 

367.88 362.92 350.28 383.64 346.98 376.10 378.42 
ANOVA F = 9.612, p-value p < 0.0001

Order-picking time 
14:38 14:33 13:55 15:15 13:49 15:05 14:56 

ANOVA F = 8.516, p-value p < 0.0001 
 

Source: Author’s own elaboration. 
 

The one-way ANOVA showed that both mean route lengths and order-picking 
times varied depending on the combination of weights. The results of post-hoc 
Tukey’s test are presented in Table 3. 

 
Table 3: Results of Tukey’s test for TMAL (significant differences are marked in bold) 

 

 C2 C3 C4 C5 C6 C7 
Route length 

Tukey’s criterion T = 17.736 
C1 4.96 17.60 15.76 20.90 8.22 10.54 
C2  12.64 20.72 15.94 13.18 15.50 
C3   33.36 3.30 25.82 28.14 
C4    36.66 7.54 5.22 
C5     29.12 31.44 
C6      2.32 

Order-picking time 
Tukey’s criterion T = 39.622 

C1 5.12 43.20 37.52 48.50 27.04 18.18 
C2  38.08 42.64 43.38 32.16 23.30 
C3   80.72 5.30 70.24 61.38 
C4    86.02 10.48 19.34 
C5     75.54 66.68 
C6      8.86 

 

Source: Author’s own elaboration. 
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For the route length, the best results (the shortest route lengths) were  
obtained for combination C5 (0.4; 0.4; 0.2). This means that in order to minimise 
the picker’s route length, the decision-maker should weigh both the distance 
from the I/O point and the degree of demand satisfaction twice as much as the 
number of other products in the neighbourhood of the location analysed. The 
mean route length for this combination was significantly shorter than the route 
lengths obtained for combinations C1, C4, C6 and C7. The mean route length for 
combination C5 was shorter by 9.6% than that for the worst combination, that is, 
C4. The results obtained by the reference combination C1 were exactly in the 
middle. 

For the order-picking time, the best results were also obtained for combination 
C5. The worst results (longest order-picking times) were obtained for  
combination C4. The mean order-picking time obtained for combination C5 was 
shorter by 9.4% than that for the worst combination C4. Also, the results for 
combination C5 were significantly better than those obtained for combinations 
C1, C2, C4, C6 and C7. The results obtained for the reference combination C1 
were exactly in the middle, as in the case of route length. 

The mean route lengths, order-picking times and the results of the ANOVA 
for GDM are presented in Table 4. 

 
Table 4: Mean route lengths, order-picking times (in minutes)  

and results of the ANOVA for GDM 
 

Specification C1 C2 C3 C4 C5 C6 C7 
Route length 

366.66 361.36 343.72 383.08 340.72 369.26 372.94 
ANOVA F = 10.306, p-value p < 0.0001

Order-picking time 
14:34 14:29 13:40 15:14 13:33 14:49 14:43 

ANOVA F = 11.647, p-value p < 0.0001 
 

Source: Author’s own elaboration. 

 
Similarly as in the case of TMAL, the one-way ANOVA for GDM showed 

that both mean route lengths and order-picking times varied significantly  
depending on the combination of weights. The results of post-hoc Tukey’s test 
for the results obtained by GDM are presented in Table 5. 

As in the case of TMAL, the shortest route lengths for GDM were obtained 
for combination C5 (0.4; 0.4; 0.2). The mean route length for this combination 
was significantly shorter than the route lengths obtained for combinations C1, 
C2, C4, C6 and C7. The mean route length for combination C5 was shorter  
by over 11% than that for the worst combination, that is, C4. The results  
obtained by the reference combination C1 for GDM were exactly in the middle, 
as previously. 
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Table 5: Results of Tukey’s test for GDM (significant differences are marked in bold) 
 

 C2 C3 C4 C5 C6 C7 
Route length 

Tukey’s criterion T = 17.659 
C1 5.30 22.94 16.42 25.94 2.60 6.28 
C2  17.64 21.72 20.64 7.90 11.58 
C3   39.36 3.00 25.54 29.22 
C4    42.36 13.82 10.14 
C5     28.54 32.22 
C6      3.68 

Order-picking time 
Tukey’s criterion T = 39.603 

C1 4.90 54.18 39.64 60.88 14.8 9.36 
C2  49.28 44.54 55.98 19.70 14.26 
C3   93.82 6.70 68.98 63.54 
C4    100.52 24.84 30.28 
C5     75.68 70.24 
C6      5.44 

 

Source: Author’s own elaboration. 

 
For GDM the shortest order-picking times were obtained for combination C5. 

The worst results – longest order-picking times – were obtained for combination 
C4. The mean order-picking time obtained for combination C5 was shorter by 
11% than that for the worst combination C4. Also, the results for combination 
C5 were significantly better than those obtained for all other combinations,  
except for C3. The route lengths obtained for the reference combination C1 were 
exactly in the middle, as previously. 
 
3.2  Comparison of the results obtained using each method 
 

The results of the paired z-test for independent samples for both methods are 
presented in Table 6. 
 

Table 6: Mean route lengths, order-picking times (in minutes) for TMAL  
and GDM and the results of the paired z-test 

 

Specification C1 C2 C3 C4 C5 C6 C7 
Route length 

TMAL 367.88 362.92 350.28 383.64 346.98 376.10 378.42 
GDM 366.66 361.36 343.72 383.08 340.72 369.26 372.94 

z 0.200 0.228 0.907 0.084 0.879 0.989 0.856 

p-value 0.710 0.705 0.591 0.733 0.595 0.581 0.598 
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Table 6 cont. 
 

Specification C1 C2 C3 C4 C5 C6 C7 
Order-picking time 

TMAL 14:38 14:33 13:55 15:15 13:49 15:05 14:56 

GDM 14:34 14:29 13:40 15:14 13:33 14:49 14:43 

z 0.271 0.234 0.932 0.105 1.033 0.990 0.891 

p-value 0.697 0.704 0.588 0.729 0.575 0.581 0.593 
 

Source: Author’s own elaboration. 
 
For both route length and order-picking time, GDM performed always better 

than TMAL, although the differences were not statistically significant. The  
difference between the mean route lengths varied from less than half of a unit for 
combination C4 to almost seven units for combination C6. For the order-picking 
time, the differences varied from one second for combination C4 to sixteen  
seconds for combination C6. Therefore, in this case, both methods are practically 
equally efficient. 

 
4  Conclusions 
 
In this paper, GDM has been applied as a multiple-criteria decision-making 
technique for the selection of locations in order-picking. Although GDM is  
usually not regarded as a decision-making support tool, its construction enables 
us to use it for this purpose. This measure has been previously used in decision 
making, as a distance measure in other techniques, such as TOPSIS (Wachowicz, 
2011). Here, it has been used as a technique to create a ranking of the  
alternatives. The alternatives were the locations in a warehouse to be visited by 
the picker to complete the orders. 

In the analysed simulation example, GDM generated similar results as 
TMAL, which is based on the classical Hellwig’s Synthetic Measure of Development. 
Although the results obtained by GDM were slightly better than those obtained 
by TMAL, the differences were not statistically significant. Within each method, 
seven combinations of weights were analysed. Once the locations had been  
selected, route lengths and order-picking times were calculated. As regards both 
route length and order-picking time, the best results for both methods were  
obtained for combination C5 (0.4; 0.4; 0.2). For both methods this combination 
generated significantly better results than most of the other combinations. This 
means that the decision-maker should attach particular importance to the  
distance from the I/O point and the degree of demand satisfaction. The best  
locations are those closest to the I/O point and with the highest degree of  
demand satisfaction. The number of other products picked in the neighbourhood 
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of the location analysed is not as important as these two criteria. A comparison 
of the results obtained by the best method and combination of weights (GDM 
with C5) with the results obtained by the worst method and combination of 
weights (TMAL with C4) shows that both the picker’s route length and the  
order-picking time can be shortened by about 11%. Of course, these results were 
obtained with the assumption that a chaotic storage system was used, hence they 
cannot be generalised for other storage systems, such as ABC or XYZ  
class-based storage systems. 

Further research will include a comparison of multiple-criteria decision- 
-making techniques for an ABC class-based storage system with within-isle and 
across-isle storing strategies. As the GDM method allows for using criteria 
measured on other than interval and ratio scales, other criteria, such as storage 
level in a high-storage warehouse or the presence (or absence) of complete 
packages at every location, will be added. Also, other methods of heuristics  
for the determination of the picker’s route (return, midpoint, largest gap,  
or combined) will be analysed. 
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