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Abstract 

 

The paper presents a new scenario-based decision rule for the spare parts 
quantity problem (SPQP) under uncertainty with unknown objective 
probabilities. The goal of SPQP is to ensure the right number of extra parts at 
the right place at the right time. In the literature, SPQP is usually regarded as 
a stochastic problem since the demand for extra parts is treated as a random 
variable with a known distribution. The optimal stock quantity minimizes the 
expected loss resulting from buying a given number of parts before potential 
failures.  

The novel approach is designed for the purchase of non-repairable spare 
parts for entirely new seasonal devices, where the estimation of frequencies is 
complicated because there are no historical data about previous failures. 
Additionally, the decision maker’s knowledge is limited due to the nature of 
the problem.  

The new procedure is a three-criteria method. It is based on the Hurwicz 
and Bayes decision rules and supported with a forecasting stage enabling one 
to set the scenario with the greatest subjective chance of occurrence. The 
method takes into account the decision maker’s attitude towards risk and the 
asymmetry of losses connected with particular stock quantities. We assume 
that the future unit purchase cost of a service part bought after the breakdown 
is also uncertain and given as an interval parameter. The approach is designed 
for short life cycle machines. 
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1 Introduction 
 

One of the main goals of the spare parts quantity problem (SPQP) is to ensure 
that right spare parts and resources are at the right place (where the broken part 
is) at the right time. Spare parts are kept in an inventory and should be in 
proximity to a functional item (engine, device, automobile, boat, machine) since 
they might be used to repair it or to replace failed units. They constitute an 
important element of logistic engineering and supply chain management. There 
are many synonyms for “spare parts” such as service parts, extra parts, repair 
parts, replacement parts and interchangeable parts.  

SPQP may be analyzed in the context of repairable and non-repairable spare 
parts (Guide and Srivastava, 1997; Louit, Banjevic and Jardine, 2005). In this 
paper we focus on the latter. 

In the literature spare parts optimization is usually regarded as a stochastic 
problem (Aronis et al., 2004; Gu and Li, 2015; Inderfurth and Mukherjee, 2008; 
Ravindran, 2007; Rodriguez et al., 2013; Sikora, 2008; Wong et al., 1997) since 
the demand for service parts is treated as a random variable with a known 
distribution. Here, however, we would like to consider SPQP as a strategic 
problem, i.e. an uncertain problem with unknown objective probabilities 
(frequencies). Such a situation may take place when a totally new device is 
bought and there are no historical data concerning previous breakdowns that 
could be used to estimate probabilities. 

SPQP may be investigated as a single-period (SPP) or a multi-period problem 
(MPP) (Petrovic et al., 1988). In this contribution we analyze the first situation 
only since the multi-period horizon cannot be discussed in the context of SPQP 
under uncertainty with permanently unknown probabilities: in subsequent 
periods historical data (frequencies) become available and the objective 
likelihood can be estimated. Thus, in the case of totally new devices MPP would 
be a mixed problem. The first stage could be analyzed without known 
probabilities, but further stages could be based on probabilities. The second 
reason why we do not deal with MPP is that we assume that the purchase of 
additional spare parts for a given device is made only once for the whole period 
of usage since the life cycle of the considered device is relatively short due to its 
seasonal character and a constantly changing environment. It is worth 
emphasizing that when the chosen decision is supposed to be executed only once 
(one-shot decision), researchers advise the decision makers (DMs) against the 
use of probabilities, because only one event has the chance to occur (von Mises, 
1949). 
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The research is related to totally new devices. Therefore, in contrast to the 
traditionally understood SPQP, we take into account not one but two types of 
uncertainty. The first one results from the unknown demand for extra parts given 
as a discrete random variable with an unknown probability distribution (discrete 
parameter). The second one is caused by the unknown future unit purchase cost 
of service parts (interval parameter).  

The paper is organized as follows. Section 2 briefly presents the main 
features of the classical SPQP. Section 3 defines a new problem: SPQP for 
totally new devices, i.e. SPQP under uncertainty with unknown probabilities. 
Section 4 discusses the characteristics of the loss matrix connected with SPQP 
for different cases and analyzes the possible usefulness of classical decision 
rules in that field. Section 5 presents the assumptions of the scenario-based 
model and a 3-criteria decision rule that may be used for the aforementioned 
problem. The procedure takes into account DMs’ preferences. Section 6 provides 
an illustrative example. Conclusions are gathered in the last section.  
 
2  The classical spare parts quantity problem: description  
 
In the original version of SPQP the goal is to find the optimal number of extra 
parts bought with the purchase of the whole device. “Optimal” means 
“minimizing the expected loss resulting from buying a given number of service 
parts before potential failures (breakdowns)”. If we buy too many parts with the 
whole machine, we lose the money spent for the purchase of those parts. On the 
other hand, if we buy not enough spare parts with the whole item, we lose the 
difference between the current price of a spare part and the previous price of that 
part. SPQP is mainly related to DMSU  decision making under stochastic 
uncertainty , and based upon the assumption of risk neutrality due to the fact 
that the demand (D) for extra parts is a random variable with a known 
probability distribution (Sikora, 2008).  

The cumulative distribution function (F) of the demand may be continuous or 
discrete. In this paper we concentrate on the second variant. Within SPQP we 
can distinguish c1, denoting the unit purchase cost of the subassembly together 
with the purchase of the whole device, and c2, denoting the unit purchase cost of 
the subassembly just after the failure, where c1 < c2. Both costs allow us to 
compute two types of losses: s1 = c1 and s2 = c2 – c1, where s1 denotes the unit 
loss from buying a service part with the whole device (loss due to the excess of 
spare parts) and s2 is the unit loss from buying an extra part just after the failure 
(loss due to the shortage of spare parts). The only decision variable in SPQP is q 
– the order quantity (number of spare parts bought with the device). Usually, the 
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DM considers possible discrete values of q from the interval [Dmin, Dmax], where 
Dmin, Dmax are the lowest and the highest observed demand for spare parts, 
respectively. 

The optimization model enabling one to find the optimal order quantity can 
be presented in the following way: 
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where q* is the optimal order quantity, l(q) denotes the expected loss, l(q,D) is 
the loss incurred when the number of spare parts bought with the device equals q 
and the demand for spare parts is equal to D. P(D) denotes the probability that 
the demand will be equal to D. Zero loss occurs if the order quantity is exactly 
the same as the demand. 

There are many possible optimization methods to solve the aforementioned 
problem, such as the use of optimization software (SAS/OR, Solver in Excel, 
minizinc, R, cplex, etc.) and formulas (the recurrence equation, the critical ratio 
or the loss matrix; Sikora, 2008). In this paper we concentrate on loss matrices. 
Table 1 presents losses l(q,D) for all possible combinations of pairs (q,D), see 
equation (3). Expected losses are generated in the last column (equation 2). The 
optimal solution is indicated by the lowest expected loss. 
 

Table 1: Loss matrix for the classical version of SPQP (general case) 
 

q \ D Dmin=qmin Dmin+1 … Dmax-1 Dmax=qmax l(q) 
qmin 0 s2·(D-q) s2·(D-q) s2·(D-q) s2·(D-q) l(qmin) 
qmin+1 s1·(q-D) 0 s2·(D-q) s2·(D-q) s2·(D-q) l(qmin+1) 
… s1·(q-D) s1·(q-D) 0 s2·(D-q) s2·(D-q) … 
qmax-1 s1·(q-D) s1·(q-D) s1·(q-D) 0 s2·(D-q) l(qmax-1) 
qmax s1·(q-D) s1·(q-D) s1·(q-D) s1·(q-D) 0 l(qmax) 

 

Source: Prepared by the author. 

 
Interesting overviews of SPQP can be found, for instance, in Kennedy et al., 

2002; Qu and Zhang, 2006; Rego and Mesquita, 2011. Extended SPQ models 
are variations of the classical SPQ model, involving additional losses due to the 
broken device, the purchase of parts at different moments, etc. (Bartakke, 1981; 

(1) 
 
(2) 
 
 
 

(3) 
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Bian et al., 2013; Fera et al., 2010; Fortuin, 1981; Gu and Li, 2015; 
Papathanassiu and Tsouros, 1986; Pastore et al., 2015; Petrovic et al., 1986; 
Rodriguez et al., 2013; Rustenburg et al., 2000; Schuh et al., 2015; Sheikh et al., 
2000; Verrijdt et al., 1998). 
 
3  Spare parts quantity problem and entirely new seasonal devices  
 
As it has been already mentioned, SPQP is usually regarded in the literature as  
a stochastic problem. However, in some circumstances it is extremely difficult to 
estimate the probability distribution (Gaspars-Wieloch, 2016a, 2017a, 2017b, 
2018b, 2019a, 2019b).  

Here we would like to investigate the case when totally new seasonal devices 
are bought. This entails: (1) the lack of historical data about previous failures, 
(2) the lack of sufficient knowledge about the mechanism of particular machines, 
(3) the inability to precisely define the whole sample space (Kolmogorov, 1993) 
and (4) perhaps a feeling anticipating new future factors which can radically 
change the trend up to now. Under such conditions objective probability 
quantification is impossible. 

We focus on machines with very short life cycle. In such a case, the purchase 
of additional spare parts for these devices is made only once for the whole 
period of use (until the machine is withdrawn from service). Under such 
assumptions SPQP can be reduced to a one-shot decision problem (Guo, 2011; 
Zhu and Guo, 2016), since for each device only one scenario can occur. 
Czerwiński (1960) and von Mises (1949) state that the mathematical probability 
(understood as frequency) and expected value cannot be used for a single event, 
but only for repetitive events. Hence, this is the second reason why the use of 
probability in SPQP is not always justified.  

There is also a general drawback related to the application of likelihood (not 
necessarily connected with SPQP and new devices). The term “probability” has 
many discrepant definitions, e.g. objective, subjective, classical, geometrical, 
frequency, logic, Bayes, Kolmogorov, Springer, Piegat, propensity (Carnap, 
1950; de Finetti, 1975; Frechet, 1938; Hau et al., 2009; Knight, 1921; 
Kolmogorov, 1933; Piegat, 2010; Popper, 1959; Ramsey, 1931; Van Lambalgen, 
1996; von Mises, 1949, 1957). The lack of unanimity leads to numerous doubts: 
what approach should be used? How to estimate the type of probability selected? 
Caplan (2001) adds that people are even unable to declare subjective 
probabilities: “they implicitly set them in acting”. 
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In connection with all those facts, we would like to investigate SPQP for 
totally new seasonal devices as an SPQP under complete uncertainty, i.e. 
uncertainty with unknown probabilities (UUP).  

It is worth mentioning that the term “uncertainty” also has diverse interpretations 
and types (Gaspars-Wieloch, 2016a, 2018b). According to decision theory, 
uncertainty may only be associated with situations where probabilities are unknown 
(in other situations this theory refers to risk or partial uncertainty). According to the 
theory of economics, there are diverse degrees of uncertainty but all of them involve 
situations with non-deterministic parameters (with risk understood as the possibility 
that some unfavorable or unpredicted event will happen). This paper is based on the 
second aforementioned theory. We consider both epistemic and aleatory uncertainty 
(Stirling, 2003; Zio and Pedroni, 2013). 

Note that SPQP can be easily combined with scenario planning (Pomerol, 
2001) thanks to (1) well-defined discrete sets of decisions (order quantities) and 
states of nature (demand quantities) and (2) the possibility to compute the loss 
matrix precisely (see Table 2).  

The result of a choice made under uncertainty with scenario planning depends on 
two factors: which decision will be selected and which scenario will occur. Thus, 
SPQP under complete uncertainty may be defined by means of a scenario-based 
decision model with m states of nature (scenarios, events, demand quantities):  
S = {S1, …, Si, …, Sm}, n possible alternatives (decisions, strategies, order 
quantities): A = {A1, …, Aj, …, An}, and n×m losses (ai,j – loss incurred by the buyer 
if state Si occurs and alternative Aj is selected) calculated according to formula (4). 
The distributions of losses are discrete. The interpretation of Si is that until the end of 
the use of a given machine Di spare parts will be needed.  
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Table 2: Loss matrix for the SPQP presented as a scenario-based model (general case) 
 

Scen. \ Altern. A1 (q=qmin) A2 (q=qmin+1) ⋯ Aj ⋯ An-1 (q=qmax-1) An (q=qmax) 
S1 (D=Dmin) a1,1 a1,2 ⋯ a1,j ⋯ a1,n-1 a1,n 

S2 (D=Dmin+1) a2,1 a2,2 ⋯ a2,j ⋯ a2,n-1 a2,n ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮  

Si ai,1 ai,2 ⋯ ai,j ⋯ ai,n-1 ai,n ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮  

Sm-1 (D=Dmax-1) am-1,1 am-1,2 ⋯ am-1,j ⋯ am-1,n-1 am-1,n 

Sm (D=Dmax1) am,1 am,2 ⋯ am,j ⋯ am,n-1 am,n 
 

Source: Prepared by the author. 

(4) 
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Researchers discuss the pros and cons of using probability data in scenario 
planning in various papers (Gaspars-Wieloch, 2019b) and SPQP usually refers to 
the probability calculus. However, in this contribution, we do not assign  
a likelihood to the demand, since the novelty degree of the decisions considered 
is very high.  

The original version of SPQP is based upon the assumption of risk neutrality. 
In this work, however, we would like to take into account various preferences of 
the DMs (predictions, attitudes towards future results) which can be measured 
by the coefficients of optimism (β) and pessimism (α): α, β  [0,1] and α + β = 1 
(α is close to 1 for extreme pessimists – risk averse behaviour, β is close to 1 for 
radical optimists – risk prone behaviour). Thanks to these parameters, we can 
adjust the final decision to the DM’s nature. Additionally, the estimation of the 
coefficients is relatively little time-consuming (less time-consuming than the 
estimation of scenario probability). 
 
4  Classical decision rules and specificity of SPQP loss matrices 
 
In this section we analyze the specificity of SPQP loss matrices and investigate 
the usefulness of classical decision rules applied to scenario planning and 
decision making under complete uncertainty (i.e. max-max rule, Wald rule, 
Hurwicz rule, Bayes rule, Savage rule and max-min joy criterion). This research 
may be helpful in constructing a suitable procedure for SPQP with totally new 
devices. 

Table 3 presents losses for three possible situations: 1. s1 > s2, 2. s1 = s2,  
3. s1 < s2) which can occur in real-life situations. Values for prices c1 and c2 are 
ficticious, but in each case the first one is lower than the second one. The first 
situation is the least dangerous for the DM since the difference between prices is 
the lowest. The highest risk is connected with the last situation where a spare 
part bought in the future is much more expensive than a current extra part. 

 
Table 3: Loss matrices for SPQP (qmin = Dmin = 0, qmax = Dmax = 4) and rankings generated  

on the basis of classical rules  examples 1-3 
 

Ex. 1. c1=50, c2=51, s1=50, s2=1 2. c1=5, c2=10, s1=5, s2=5 3. c1=1, c2=51, s1=1, s2=50 
S \ A A1 A2 A3 A4 A5 A1 A2 A3 A4 A5 A1 A2 A3 A4 A5 

S1  0 50 100 150 200 0 5 10 15 20 0 1 2 3 4 

S2  1 0 50 100 150 5 0 5 10 15 50 0 1 2 3 

S3 2 1 0 50 100 10 5 0 5 10 100 50 0 1 2 

S4 3 2 1 0 50 15 10 5 0 5 150 100 50 0 1 

S5  4 3 2 1 0 20 15 10 5 0 200 150 100 50 0 
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Table 3 cont. 
 

Ex. 1. c1=50, c2=51, s1=50, s2=1 2. c1=5, c2=10, s1=5, s2=5 3. c1=1, c2=51, s1=1, s2=50 
S \ A A1 A2 A3 A4 A5 A1 A2 A3 A4 A5 A1 A2 A3 A4 A5 

M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
W 4 50 100 150 200 20 15 10 15 20 200 150 100 50 4 
H  
α=0.2 

0.8 10 20 30 40 4 3 2 3 4 40 30 20 10 0.8 

H  
α=0.8 

3.2 40 80 120 160 16 12 8 12 16 160 120 80 40 3.2 

B 2 11.2 30.6 60.2 100 10 7 6 7 10 100 60.2 30.6 11.2 2 
S 4 50 100 150 200 20 15 10 15 20 200 150 100 50 4 

 

Source: Prepared by the author. 
 

Conclusions regarding the specific structure of SPQP loss matrices are as 
follows: 
a)  for s1 sufficiently larger than s2 the average of losses is the smallest for  

q = qmin and the range between aj,min (the smallest loss related to alternative Aj) 
and aj,max (the largest loss related to Aj) is an increasing function f(q); 

b)  for s1 close to s2 the average of losses is the smallest for the middle q; 
c)  for s1 sufficiently lower than s2 the average of losses is the smallest for  

q = qmax and the range between aj,min and aj,max is a decreasing function f(q); 
d)  loss distributions connected with particular orders are usually asymmetric; 
e)  loss distributions are always symmetric for extreme alternatives (i.e. for the 

smallest and the largest numbers of spare parts); 
f)  for each decision particular losses a1,j, …, ai,j, …, am,j are always ordered in 

the form of a convex function and the minimum loss is equal to zero. 
g)  ranges vary significantly for cases where s1 significantly differs from s2; 
h)  each decision is Pareto-optimal! 

Hence, we see that in SPQP distributions of losses are usually asymmetric 
and loss ranges for particular order quantities can be extremely diverse.  

Now, let us check whether classical decision rules may be applied to SPQP. 
The max-max rule is designed for radical optimists only: it does not satisfy the 
assumption from the previous section since it is unable to adjust the decision to 
the DM’s nature. Note that in the case of SPQP, the max-max rule has to be 
transformed prior to its use to a min-min rule because the matrix contains losses 
expressed as positive numbers. And then we can notice that, due to the very 
specific structure of the loss matrix it is impossible to generate a ranking on the 
basis of that procedure since all decisions are always treated as the best ones, 
regardless of the problem analyzed (the best value for each decision is equal to 0), 
see Table 3 (row M)! 
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The Wald (Wald, 1950) decision rule (max-min rule for profits and min-max 
rule for losses expressed as positive numbers) is designed for radical pessimists 
only, so again, this approach does not allow to consider diverse types of decision 
makers, either. In the case of SPQP, this method always suggests the decision 
with the smallest range of losses and focuses on extreme states, i.e. scenarios for 
which the demand is equal to Dmin or Dmax (other events are not significant), see 
Table 3 (row W). Those states are connected with the largest loss. 

The next well-known decision rule is the Hurwicz criterion (Hurwicz, 
1952). Here, the DM declares his/her coefficient of optimism/pessimism and two 
extreme scenarios are always taken into account: one with the highest loss and 
one with the lowest loss. In the case of SPQP the event with the highest loss is 
related to Dmin or Dmax. The event with the lowest loss is different for each 
decision and occurs when the order quantity is equal to the demand. The idea of 
the Hurwicz rule consists in (1) calculating for each decision the sum of two 
products: coefficient of optimism (β) multiplied by the highest profit (the lowest 
loss) and coefficient of pessimism (α) multiplied by the lowest profit (the highest 
loss), and (2) selecting the decision with the highest profit weighted average or 
the lowest loss weighted average. Theoretically, the Hurwicz rule may be 
applied by different decision makers (optimists, pessimists, moderate DMs). 
Nevertheless, the structure of the SPQP loss matrix is so unusual that the 
maximal profit (i.e. the minimal loss) is always equal to zero. Therefore, 
regardless of the level of α and β (with one exception: α = 0), decisions 
recommended by the Hurwicz rule are exactly the same as alternatives suggested 
by… the Wald rule, see Table 3 (rows H α = 0.2 and H α = 0.8). Hence, as  
a matter of fact, there is no possibility to take into consideration different types 
of decision makers, although each strategy is Pareto-optimal! For instance, 
according to the Hurwicz rule, alternative A1 is better than A2 in Example 1 even 
for α = 0.2, which is quite astonishing as A2 dominates A1 in the case of four out 
of five states! Even when the coefficient of pessimism decreases, the Hurwicz 
rule applied to SPQP indicates variants suitable for pessimists.  

Additionally, we can easily notice that when computing weighted indices for 
each decision, the status of particular scenarios varies depending on the 
alternative (see, for instance, example 1, Table 3: S1 is the best scenario for A1, 
but it is the worst state for A5), which may be quite surprising in SPQP, where 
we rather tend towards the view that the most optimistic (pessimistic) scenario is 
that with the lowest (highest) demand for extra parts, regardless of losses 
connected with particular decisions. Perhaps, a global status for each state would 
be more appropriate than a local one. 
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A general remark concerning the Hurwicz rule: the procedure does not take into 
account the nature of the outcome distribution connected with particular alternatives, 
which leads to illogical recommendations for decision problems with asymmetric 
profits (or losses) (Gaspars-Wieloch 2014a, 2014b, 2016a, 2017b). This drawback is 
worth considering since in SPQP losses are usually asymmetric. 

As opposed to previous approaches, the Bayes (Laplace) criterion, thanks to 
the use of the arithmetical average, analyzes both extreme and intermediate 
losses (not only extreme ones), which is significant in the case of asymmetric 
outcomes (Table 3, row B). However, the Bayes rule is not suitable for SPQP 
under complete uncertainty, since it does not allow to declare our coefficients of 
pessimism and it is designed for multi-shot decisions (hence for a multi-period 
horizon) only, while in this paper we assume that the purchase of additional 
spare parts at cost c1 for a given device is made once for the whole period of use 
(until the machine is withdrawn from service). 

There are also two other classical decision rules for which the position of  
a given outcome in the profit (loss) matrix is extremely important. This is  
a feature characteristic of the Savage rule (Savage, 1961) and the max-min joy 
criterion (MJC) (Hayashi, 2008). The goal of MJC is to show the superiority of 
particular outcomes connected with a given scenario to its worst result, while in 
the Savage rule the aim is to demonstrate the inferiority of particular payoffs 
related to a state of nature to its best result (Gaspars-Wieloch, 2014c, 2018a). 

The Savage rule (min-max rule) requires the DM to generate a relative loss 
matrix (regret matrix), but due to the occurrence of zero losses for each scenario 
in SPQP, the original loss matrix may be treated as a relative loss matrix 
(without any transformation). Hence, in the case of SPQP, rankings obtained by 
means of the Savage approach correspond to rankings offered by the Wald rule 
(Table 3, row S) and, again, that method is appropriate for pessimists only: there 
is no possibility to adjust recommendations to the DM’s nature.  

The idea of the max-min joy criterion (MJC) is very similar to the reasoning 
characteristic of the Savage procedure, but instead of a regret table a relative 
profits matrix is applied and the solution is set on the basis of the worst relative 
profits connected with particular alternatives. MJC is designed only for people 
exhibiting a risk-averse behavior. Note that in the case of SPQP the worst 
relative profits are always related to the first (qmin) or the last decision (qmax), 
which means that even for significant differences between s1 and s2 those 
extreme alternatives (qmin and qmax) will never be optimal in accordance with 
MJC (they have at least one zero value in their column): Table 4, MJC. This 
conclusion seems illogical since in some real-life situations the choice of 
extreme order quantities is desirable. 
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Table 4: Relative profit matrices and rankings generated by MJC  examples 1-3 
 

Ex. 1. c1=50, c2=51, s1=50, s2=1 2. c1=5, c2=10, s1=5, s2=5 3. c1=1, c2=51, s1=1, s2=50 
S \ A A1 A2 A3 A4 A5 A1 A2 A3 A4 A5 A1 A2 A3 A4 A5 

S1  200 150 100 50 0 20 15 10 5 0 4 3 2 1 0 

S2  149 150 100 50 0 10 15 10 5 0 0 50 49 48 47 

S3 98 99 100 50 0 0 5 10 5 0 0 50 100 99 98 

S4 47 48 49 50 0 0 5 10 15 10 0 50 100 150 149 

S5  0 1 2 3 4 0 5 10 15 20 0 50 100 150 200 

MJC 0 1 2 3 0 0 5 10 5 0 0 3 2 1 0 
 

Source: Prepared by the author. 
 

Due to all these factors, we can conclude that the aforementioned decision 
rules should not be applied to SPQP (lack of possibility to consider the DM’s 
nature; lack of application to one-shot decisions or asymmetric distribution of 
losses; generation of irrational rankings). Besides classical decision rules, there 
are of course many extended decision rules designed for uncertain decision 
making, but they refer to the probability calculus (e.g. Basili and Chateauneuf, 
2011; Ellsberg, 2001; Etner et al., 2012; Garcia et al., 2012; Ghirardato et al., 
2004; Gilboa, 2009; Gilboa and Schmeidler, 1989; Hildebrandt and Knoke, 
2011; Marinacci, 2002; Pereira et al., 2015; Perez et al., 2015; Tversky and 
Kahneman, 1992). 

In the next section we are going to describe in detail the problem to be 
solved, and suggest a new decision rule for that purpose.  
 
5  Three-criteria decision rule for SPQP and entirely new devices 
 
In previous sections we have demonstrated that (1) SPQP under complete 
uncertainty was worth investigating and (2) classical and extended decision rules 
were not appropriate to solve that problem. In this section all the assumptions 
connected with the chosen problem are gathered and a novel procedure is 
proposed. 

The scenario-based SPQP model contains the following assumptions: 
1)  states and the loss matrix are known, but the probability (frequency) of 

particular scenarios is not known (entirely new devices, lack of historical 
data);  

2)  cost c2 is not treated as a deterministic parameter since it concerns the future: 
it is given as an interval parameter, which means that parameter s2 is also 
interval and the loss matrix is partially interval (Table 5 presents fictitious 
illustrative prices); 
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3)  the problem concerns a one-period horizon (short life cycle devices) and the 
period ends when the machine is withdrawn from service (spare parts at cost 
c1 are purchased only together with the purchase of the machine); 

4)  the final recommendation takes into account the DM’s nature, i.e. his/her 
attitude towards a given problem (coefficients α and β); 

5)  the optimal decision is performed only once (one-shot decision): in the future, 
due to new experiences, the DM’s nature and the loss matrix may change; 

6)  the optimality is checked using the weighted and arithmetical averages and 
the standard deviation of all losses (each loss connected with a given 
alternative has an impact on the final choice, not only extreme losses); 

7)  each order quantity may be optimal (depending on coefficients α and β) since 
each one is Pareto-optimal (which is not the case for classical decision rules); 

8)  the model is useful for both active and passive DMs (we assume that an 
active DM is a person who intends to analyze all the values very carefully 
and even influence the particular steps of the algorithm; while a passive DM 
only declares his/her coefficient of optimism and waits for the final 
recommendation); 

9)  the status of each scenario is defined globally, not locally. 
 

Table 5: Partially interval loss matrices  examples 4-5 
 

Ex. 4. c1=50, c2 [51,52], s1=50, s2 [1,2] 5. c1=1, c2 [41,51], s1=1, s2 [40,50] 
S \ A A1 A2 A3 A4 A5 A1 A2 A3 A4 A5 

S1 0 50 100 150 200 0 1 2 3 4 

S2 [1,2] 0 50 100 150 [40,50] 0 1 2 3 

S3 [2,4] [1,2] 0 50 100 [80,100] [40,50] 0 1 2 

S4 [3,6] [2,4] [1,2] 0 50 [120,150] [80,100] [40,50] 0 1 

S5 [4,8] [3,6] [2,4] [1,2] 0 [160,200] [120,150] [80,100] [40,50] 0 
 

Source: Prepared by the author. 
 

The investigation of SPQP under complete uncertainty with interval unit 
purchase costs of the subassembly just after the failure (see assumption 2) is 
desirable because that price is related to the future and future purchase times and 
circumstances are not known exactly, especially in the case of totally new 
devices. The interval cost c2 influences particular states of nature to a different 
extent (compare, for instance, scenarios S1 and S4, Table 5). Intervals in the 
matrix have different widths, i.e., differences between their endpoints (e.g.,  
50-40 = 10 and 150-120 = 30), and they occur only in the bottom left corner of 
the matrix. Losses connected with the first scenario and the last decision are 
given as point values. 
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The analysis of the standard deviation (assumption 6) is crucial because the 
ranges of losses related to particular order quantities vary rather significantly.  

The procedure developed for the aforementioned problem refers to several 
other approaches described in the literature.  

First, we are going to apply some elements of the (H+B) rule presented in 
Gaspars-Wieloch (2014a, 2015b, 2016b), which is a hybrid of the Hurwicz and 
Bayes decision rules. That method was originally worked out for profit matrices, 
but it can be easily modified for loss matrices. The hybrid, thanks to parameters 
α  [0,1] and β = 1  α  [0,1], takes into account the DM’s preferences (as does 
the Hurwicz rule). In (H+B) rule, in contrast to the Hurwicz, Wald, Hayashi, and 
Savage approaches, all the outcomes influence the value of the final measure, 
which is quite advantageous for cases where alternatives contain many payoffs 
almost equal to the extreme values. The general idea of H+B is to assign, for  
a pessimist, α to the last term of the non-increasing sequence of all the payoffs 
related to a given decision and β to the remaining terms of that sequence. For an 
optimist, weights are set in a different way: β is connected with the first term of 
the sequence and α with the remaining ones. The assignment of parameters α and 
β to particular payoffs, depending on the level of optimism, is justified in 
Gaspars-Wieloch (2014a, 2017b) where the author suggests a significant 
modification of the classical Hurwicz decision rule and adds to that procedure 
certain features characteristic for the Bayes rule. The idea of the hybrid 
presented in Gaspars-Wieloch (2014a) is to recommend, for a strong pessimist, 
an alternative with a relatively high payoff aj,min or with quite frequent payoffs 
(almost) equal to aj,max since the pessimist fears the worst, regardless of the 
decision selected, and that is why such a DM needs an alternative which is 
attractive even if the worst state occurs and which gives a feeling of security. On 
the other hand, that rule suggests, for a strong optimist, an alternative with the 
highest (or almost the highest) payoff aj,max, but its highest payoffs do not have to 
be frequent since the optimist is almost or even completely sure that the best 
scenario will occur regardless of the decision selected.  

Second, due to the fact that in SPQP the ranges of losses related to particular 
alternatives vary rather significantly, we will support the (H+B) rule with an 
additional auxiliary decision tool, which analyzes the deviations between 
outcomes (Gaspars-Wieloch, 2015a, 2017b; Ioan and Ioan, 2011).  

Third, we perceive a necessity to refer to the SF+AS (scenario forecasting 
and alternative selection) procedure recommended in Gaspars-Wieloch (2015a). 
Its general idea is to (1) forecast the set of scenarios with the largest subjective 
chance of occurrence (according to the DM’s level of pessimism/optimism), see 
assumption 9, and (2) select a suitable alternative on the basis of a reduced 
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payoff matrix. The use of certain SF+AS features is crucial in SPQP under 
complete uncertainty since, due to the existence of zero losses for each decision, 
the original (H+B) decision rule, just like the Hurwicz rule, unfortunately 
recommends the same optimal order quantities as the Wald rule does, regardless 
of the DM’s nature. 

Fourth, we intend to choose a tool enabling one to analyze interval values 
(see parameter c2). One may apply, for instance, (1) fuzzy numbers and sets 
(which requires the estimation of additional parameters, such as degrees of 
membership), (2) the average cost c2, (3) the level of c2 which corresponds to the 
DM’s nature, (4) a meta loss matrix (containing scenarios with the same demand 
and different values of c2). Here, we decide to create two loss matrices for 
extreme cases (i.e. endpoints of interval [c2,min; c2,max]) and to compare the 
recommended solutions. 

The suggested three-criteria rule for SPQP and totally new devices consist of 
the following steps:  
1) Define qmin = Dmin, qmax = Dmax, m (number of scenarios), n (number of 

decisions), the set of alternatives (A) and the set of scenarios (S); this is 
performed mainly by experts; 

2)  Estimate cost c1 as a point value and cost c2 as an interval value: [c2,min; c2,max]. 
Compute s1, s2 and generate the partially interval loss matrix; this is 
performed mainly by experts; 

3)  Determine α and β (subjectively or on the basis of psychological tests). The 
coefficients should describe the DM’s attitude towards a demand for spare 
parts. If α  [0,0.5[, then α = αo, β = βo (αo and βo are optimist’s coefficients). 
If α ]0.5,1], then α = αp, β = βp (αp and βp are pessimist’s coefficients);  

4)  Assign an interval for the coefficient of optimism to each scenario. The width 
w of the range for each state of nature is defined as follows: 

m
w

1
 

The extreme values (bi and ti) of interval [bi; ti] set for scenario Si, i.e. its 
endpoints, are computed according to Equations (6)–(7): 

       1minmax
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Apart from the interval for the highest demand (i.e. the last scenario), the 

intervals are left-open, i.e. ]bi; ti] for i = 1,2,…, m-1 and [bi; ti] for i = m. 

(5) 
 

(6) 

 
(7) 
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5)  Find the scenario which corresponds to the coefficient of optimism declared 
by the DM (according to intervals computed in step 4). Let us denote this 
state of nature by S*

i, and the losses connected with S*
i by a*

i,1, …, a*
i,n-1, a

*
i,n;  

6)  Create two loss matrices: matrix I containing losses calculated on the basis of 
c2,min and matrix II for c2,max. Perform steps 7-10 separately for each matrix; 

7)  Calculate, for each decision, index hbj (hbp
j, hbo

j or hb0.5
j depending on the 

parameter α). If α]0.5,1], calculate hbp
j (index for pessimists) from 

Equation (8). If α[0,0.5[, compute hbo
j (index for optimists) following 

formula (9). If α = 0.5, calculate hb0.5
j using Equation (10), where bj denotes 

the Bayes criterion, i.e. the average of all losses. 
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The denominators in Equations (8)-(9) are introduced so that the final 

values of the particular indices belong to the interval [aj,min;aj,max]. 
Denominators are not crucial and can be omitted when preparing the ranking; 

8)  Choose alternative A*
j fulfilling condition (11). Options A*

j chosen on the 
basis of matrices I and II belong to sets A*

I and A*
II, respectively. If, within  

a given matrix, there are alternatives with indices hbj very close to the 
smallest one, they may also be selected by the DM as elements of sets A*

I and A*
II;

 

)(minarg*
j

j
j hbA 

 
9)  If selected decisions A*

j fulfill Equations (12)-(19), A*
j = A**

j. Go to step 11. 
Otherwise, go to step 10. 
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  minminmax
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10)  Find the nearest decision (by gradually increasing or decreasing the order 

quantity) satisfying Equations (12)-(19) and denote it by A**
j;  

11)  Decisions A**
j chosen on the basis of matrices I and II belong to sets A**

I and 
A**

II, respectively. If both sets are singleton sets and A**
I = A**

II, then 
decision A**

j (equivalent for both sets) is the suitable one (let us denote it by 
A***

j); Otherwise, go to step 12; 
12)  If at least one set (A**

I or A**
II) is a multi-element one and both sets contain 

exactly one common decision A**
j, then that decision is the suitable one (i.e. 

A***
j). Otherwise, go to step 13; 

13)  If both sets contain more than one common decision A**
j, choose option 

A***
j according to Equations (20)-(22). Otherwise, go to step 14; 
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14)  If the two sets are disjoint, choose option A***
j according to formulas (23)-(25).  
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In the last part of section 5 we explain in detail steps, terms and equations of 
the above algorithm. 

Steps 4 and 5 refer to the SF+AS procedure (Gaspars-Wieloch, 2015a), which 
consists in predicting the scenario with the greatest subjective chance of 
occurrence on the basis of the coefficient of optimism, but this time, instead of 
dominance cases used in the original version, a new method is applied. The 
reasoning is as follows: the more optimist the DM is, the more probable is the 
minimal demand for extra parts, so the largest values of β are assigned to 
scenario Dmin. The use of a different approach (as compared to the original 
SF+AS procedure) is justified below. In SPQP the situation is very specific: each 
successive state of nature is connected with a greater number of failures, hence 
with worse conditions. Therefore, the status of the particular scenarios can be 
assessed even without the knowledge of all the losses connected with a given 
event.  

In steps 7 and 8 we refer to the hybrid of Hurwicz and Bayes rule. However, 
this time, we assign the highest coefficient (α or β) not to the extreme value (the 
lowest or the highest one), but to the value connected with the scenario with the 
highest subjective chance of occurrence. Such a modification results from the 
fact that in SPQP the status of particular scenarios can be evaluated in a global 
way, thus it does not change depending on the order quantity considered. The 
idea to treat the scenario status globally (not locally) has been already suggested 
by Milnor (1954) who stated that each decision rule theoretically designed for 
games against nature, which treats nature as a conscious opponent who is 
altering strategies depending on the outcomes, is wrong and unsatisfactory.  

Steps 7 and 8 use the first criterion in the three-criteria decision rule, i.e. the 
weighted average of losses. The second and third criteria (arithmetical average 
and standard deviation, see Equations 12 and 16, step 9) are introduced in order 
to find a relatively safe strategy (i.e. an alternative with a relatively small range 
of losses and as few high losses as possible), which is particularly important in 
the case of cautious DMs. Of course, the arithmetical average and the standard 
deviation are just suggestions. One may use other measures, such as ranges of 
losses connected with particular order quantities. Note that the last two criteria 
are applied in the algorithm only to decisions satisfying the first criterion. 
However, if there are other decisions with indices hbj very close to the lowest 
one, we recommend calculating and comparing the values of the second and 
third measures for the whole subset containing the best strategies according to 
the first criterion. We purposely do not define the acceptable distance between 
the lowest index hbj and the other ones: we leave it to the DM.  
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Step 11 results from the fact that if for c2,min the only solution A**
j is the same 

as for c2,max, then for any value from interval [c2,min; c2,max], solution A**
j will be 

the same. 
As a matter of fact, the ceiling and floor in Equations (20) and (23) (steps  

13-14) are useful only if one device is bought. When more than one machine is 
bought, the ceiling and floor in that formula are not crucial, since the final result 
may be non-discrete (e.g. we might buy 5.5 spare parts on average, i.e. for some 
devices 5 and for others, 6). The non-discrete average is appropriate only if all 
devices are identical and purchased for the same project (company). In the case 
of the purchase of one machine, we assume that for optimists (pessimists) we 
search for the floor (ceiling) of that ratio (Equation 20 or 28) since optimists 
(pessimists) expect a low (high) demand and a low (high) cost c2. 
 
6  Example 
 
In this section we are going to solve Example 6 (Table 6) by means of the three- 
-criteria decision rule. Let us assume that an engine with a totally new 
technology is bought. All steps are analyzed below: 
1) qmin = Dmin = 0, qmax = Dmax = 4, n = m = 5, S = {S1,S2,S3,S4,S5},  

A = {A1,A2,A3,A4,A5}; 
2) c1 = 10; 17 ≤ c2 ≤ 25; s1 = 10; 7 ≤ s2 ≤ 15. The loss matrix is shown in Table 6. 
3) α = 0.8, β = 0.2 (the DM is a moderate pessimist)  α = αp, β = βp; 
4) w = 1/m = 0.2. Intervals: [0;0.2] for S5, ]0.2;0.4] for S4, ]0.4;0.6] for S3, 

]0.6;0.8] for S2 and ]0.8;1.0] for S1; 
5) The scenario with the greatest chance of occurrence is Si

* = S5 since  
βp = 0.2  [0;0.2]. The most “probable” losses are: a*

i,1 = [28,60],  
a*

i,2 = [21,45], a*
i,3 = [14,30], a*

i,4 = [7,15], a*
i,5 = 0;  

6) Matrices I and II contain losses equal to the left and right interval endpoints, 
respectively (Table 7); 

 
Table 6: Partially interval loss matrix – example 6 

 

Ex. 6. c1=10, c2 [17,25], s1=10, s2 [7,15] 
S \ A A1 A2 A3 A4 A5 

S1 0 10 20 30 40 

S2 [7,15] 0 10 20 30 

S3 [14,30] [7,15] 0 10 20 

S4 [21,45] [14,30] [7,15] 0 10 

S5 [28,60] [21,45] [14,30] [7,15] 0 
 

Source: Prepared by the author. 
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Table 7: Matrices I and II (losses and computations) – example 6 
 

Ex. Matrix I. c1=10, c2=17, s1=10, s2=7 Matrix II. c1=10, c2=25, s1=10, s2=15 
S \ A A1 A2 A3 A4 A5 A1 A2 A3 A4 A5 

S1 0 10 20 30 40 0 10 20 30 40 

S2 7 0 10 20 30 15 0 10 20 30 

S3 14 7 0 10 20 30 15 0 10 20 

S4 21 14 7 0 10 45 30 15 0 10 

S5 28 21 14 7 0 60 45 30 15 0 

HBp 19.25 14.37 11.62 11.00 12.50 41.25 29.38 20.63 15.00 12.50 

Constraints Average <= 12.16; st. deviation <= 12.49 Average <= 18.00; st. deviation <= 13.69 

Average bj 14.00 10.40 10.20 13.40 20.00 30.00 20.00 15.00 15.00 20.00 

Standard 
deviation 11.07 7.83 7.50 11.74 15.81 23.72 17.68 11.18 11.18 15.81 

HBp (revised) 19.25 14.37 11.62 11.00 12.50 41.25 29.38 20.63 15.00 12.50 
 

Source: Prepared by the author. 
 
7)-10)  Computations for both matrices are also presented in Table 7. As we 

can see, A4 is selected in step 8 in matrix I (due to the lowest value hbj): 
A*

I = {A4}, but the average b4 for that decision exceeds the allowed one 
(13.4 > 12.16). Thus, although its standard deviation satisfies Equation 
(16): 11.74 < 12.49, one should find another alternative. The nearest 
acceptable is Aj

** = A3, since 10.20 < 12.16 and 7.5 < 12.49. Hence A**
I = 

={A3}. A similar procedure is applied to matrix II. This time, A*
II = {A5}, 

but the average and standard deviation are too high: 20.00 > 18.00 and 
15.81 > 13.69. Therefore, we have to search for Aj

**: A**
II = {A4}; 

11)-14)  Sets A**
I and A**

II contain one element each, but they are disjoint. That is 
why we move directly to step 14 and choose the final decision: A*** = {A4} 
since j**

min = 3, j
**

max = 4 and β = 0.2. The optimal order quantity is 3. 
At the end of this section we may check the results given by the Hurwicz rule 

and the original (H+B) rule which theoretically take into account the DM’s 
nature. They also recommend A3 (matrix I) and A4 (matrix II), but note that their 
recommendations will not change after the modification of the coefficient 
values! If e.g. α = 0.2, β = 0.8 (moderate optimist), the solution suggested by 
both procedures will be still the same and that is alarming (the reason has been 
given in previous sections: rankings do not change due to the occurrence of  
a zero loss for each decision). Fortunately, such a situation will not occur if  
we apply the three-criteria approach. For a moderate optimist that method 
recommends A2. 
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7  Conclusions 
 
The spare parts quantity problem (SPQP) under complete uncertainty has not 
been discussed yet in the literature, but we perceive the necessity to investigate 
this issue since in some cases the probability (frequency) estimation may be 
onerous (devices with a new technology). We have demonstrated that, due to  
a very specific structure of the loss matrix, classical decision rules designed for 
decision making under uncertainty with unknown probabilities cannot be applied 
to this problem, especially if one intends to take into account the decision 
maker’s attitude towards risk. This paper contains a description of a three- 
-criteria procedure that may be useful for the uncertain version of SPQP with 
totally new seasonal devices. The novel approach combines a hybrid of the 
Hurwicz and Bayes decision rules with the average and standard deviation 
criteria. It also refers to a two-stage procedure (SF+AS) consisting in forecasting 
the scenario with the largest subjective chance of occurrence before the final 
selection of the appropriate decision. Another method for spare parts demand 
forecasting has been already proposed by Romeijnders, Teunter and van 
Jaarsveld, 2012), for instance.  

The three-criteria approach has several significant advantages. First, it takes 
into consideration the decision maker’s attitude towards a given problem and 
leads to logical results for each kind of decision maker. Second, it may be 
applied even if the distribution of losses connected with particular alternatives is 
not symmetric since it examines each loss (not only extreme ones). Third, it has 
been worked out for the case where the future unit purchase cost of a spare part 
is given as an interval parameter. Fourth, it analyzes two kinds of uncertainties: 
uncertain demand for spare parts (discrete random variable with unknown 
probability distribution) and uncertain future cost of missing parts (interval 
value). Fifth, it does not require any information about the likelihood, which is 
useful in the case of new machines and one-shot decisions. It only applies 
certain secondary probability  like quantities which are not estimated by the 
DM, but are generated using the coefficient of optimism. Sixth, depending on 
the DM’s commitment, the procedure may be applied by both active and passive 
decision makers. Seventh, the method is designed for one-shot decisions (i.e. 
single-period problems), but the obtained recommendation can be used 
simultaneously for each identical device belonging to a given company.  

Note that the new procedure can support the SPQP decision making process, 
but it is reasonable to use it only in the case of expensive purchases. Otherwise, 
simple reasoning seems sufficient.  
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In the future, it would be desirable to analyze SPQP in the context of the 
length of the period of use (when is the machine going to be withdrawn from 
service?). This factor is also uncertain and may affect the final decision as well. 
A similar problem is discussed, e.g., in de Jonge et al. (2015). 
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