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INTRODUCTION

This paper reports comprehensive computation experiences on a general
modeling framework for a flexible crew-shift duties generation problem (DGP)
initially described in [5]. DGP arises naturally as a mathematical description for
the crew (being bus drivers) deployment problem against the background of pro-
jects [13] conducted at the Busing and Baggage Departments of the Hongkong
Airport Services (HAS), Ltd. HAS of the Hong Kong International Airport is
the primary handler of all ground services and aircrafts support functions. Our
resulting goal programming (GP) approach has, for the actual case study, exhi-
bited its significant impact on the manpower planning issues albeit its apparent
modeling simplicity [9]. The primary factor for its success is GP models’ ease of
handling frequent changes of flight schedules by modeling flexibility in the work
patterns of workers’ fixed-length duties [13].

Beyond case studies, there are two natural concerns on the GP models
further examined in this paper: Concern on model robustness (or its modeling
adaptiveness for different problem scenarios) and concern on computation ro-
bustness with integer variables. The first concern is addressed here by way of
successful computations with different key control parameter values for 25 sets of
randomly generated problem instances of input data. The second concern is then
further addressed in terms of a “best-fitting” type heuristics and its comparative
study (with GP) on the same 25 data sets. Finally the heuristics is tested on an
extensive set of 1 000 additional randomized data instances.

Since the main focus of this paper is on computational experience, a
detailed review on the vast literatures on manpower duties and crew plan-
ning/scheduling/rostering problems (DGP/CSP/CRP) is not given here. Instead,
we mention two key review references: a classical review of Bodin, Golden, As-
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sad & Ball [3]; and a most updated collection of papers given in a whole issue
of the ”European Journal of Operational Research” (EJOR) 2004, Vol. 153(1).
This February 2004 feature issue of EJOR provides a comprehensive review of
the areas of “Timetabling and Rostering”. Significant scientific interests are evi-
denced by the success of the EURO Working group on Automated Timetabling
(WATT) and the international series of conferences on the Practice and Theory
of Automated Timetabling (PATAT). A dozen or so papers in this special issue
report on a wide range of rostering applications, with an editorial by Burke and
Petrovic [4]. Examples include review paper of staff scheduling and rostering by
Ernst et al. [10]; nurse rostering problem by Bellanti et al. [2]; local search for
shift design by Musliu et al. [11]; and a case study of single shift planning and
scheduling by Azmat and Widmer [1].

For an overview of DGP/CSP/CRP as such that is more closely related to
our specific airport applications, the readers can refer to our forthcoming article
to appear in a future issue of EJOR [7] or its conference proceedings versions of
Chu [6] and Chu and Yuen [9].

1. GOAL PROGRAMMING FORMULATION

The modeling formulation of DGP that we describe here can be interpreted
as the basic core – the planner – of a more sophisticated DGP/CSP/CRP integrated
model in the following sense. DGP in its simplest form (computes and) allocates
duties (of given fixed structure of work pattern, rather than crew or staff needing
further varying requirements of scheduling) to cover known demands. Demands
are given, for equally spaced (hourly) time intervals of (the working time of)
a day.

As such, DGP is the prerequisite to CSP and CRP in that it provides the
planning inputs needed in subsequent scheduling and rostering of staff. As its
name implies, DGP allocates duties (performed by crew) in an optimal way to
meet known demand over a contiguous number of time intervals. We study its
base formulation in this paper as stated below. A more detailed account of DGP
with its extensions is given in an earlier paper of Chu [5] mentioned above.

We use the following notations for our GP model. Let H be the working
time horizon, and let h = 1, · · · ,H index the individual hours. Rh denotes the
demand for interval h and dh represents the over allocation (or over-achievement
deviation variable in a GP context) at interval h. The length of a duty is denoted
by J . The primary decision variable xij is the number of allocated staff that
starts duty from interval i and breaks at the jth interval after the start of duty,
j = 1, · · · , J . Hence for a working horizon of intervals 1, · · · ,H , we have for
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the index i = S, · · · , T . The earliest start interval S is such that S ­ 1 whereas
the latest start interval T is limited to T ¬ H − J + 1 (to finish work at interval
H). Note that normally S = 1 as long as R1 > 0 (there is demand for the very
first interval); and T = H − J + 1 whenever RH > 0 (there is demand for the
very last interval).

We are now ready to state the base model of DGP in terms of a (linear
integer goal) programming formulation:

Min
T∑

i=S

J∑

j=1

cijxij + WD (0)

Subject to
q∑

i=p

∑

j 6=h−i+1

xij − dh = Rh , h = 1, · · · ,H (1)

dh ¬ D , h = 1, · · · ,H (2)

where p ≡ max {h− J + 1, S}, q ≡ min {h, T}, and the allocation plan { xij }
are non-negative integer variables.

We see that the LHS of constraint (1) is the total work contribution as a
function of { xij } since the summation over j = 1, · · · , J (j 6= h− i+ 1) spans
the J − 1 working intervals while the summation over p ¬ i ¬ q picks out the
total number of staff covering interval h. The single variable D of constraint (2)
records the maximum (i.e. over achievement) deviation over all time intervals.
Hence (for a “smoothed” allocation) it is minimized, either non-preemptively
with a weighting factor W as shown in (0) here, or preemptively as the second
priority goal. The coefficients { cij } can either represent the actual unit pays
of staff or (V-shaped) weighting parameters for different time and/or meal break
intervals.

Lastly, we give a brief explanation of the summation indices of i ranging
from p to q in (1): At time interval h, the index i in xij would lead to a “covering”
duty (i.e. xij contributing workforce supply at time h), if i satisfies i+J−1 ­ h
(from the earliest possible start of time i). This implies i ­ h−J + 1. Similarly,
i satisfies i ¬ h (to the latest possible start of time i). Hence for index i to cover
time h, we must have h− J + 1 ¬ i ¬ h. Therefore, together with S ¬ i ¬ T ,
we have

p ≡ max {h− J + 1, S} ¬ i ¬ min {h, T} ≡ q,

as shown in (1) above.
As an illustration of its computation, we show, in Figure 1, a typical nume-

rical (daily) output from the DGP computation using a simple Lingo code [12]
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for our bus drivers’ fixed-length duties generation application. For this actual
problem instance, the parameters used are: H = 19, I = 11, J = 9, S = 1, T =
11, cij = 1 (implying uniform pay rate) and W = 1000. Results for a total of 19
hourly time intervals are shown in Figure 1. In the figure, every 3 occurences of
the symbol “#” denote one unit of manpower demand; whereas the counterparts
of the symbol “0” refer to one unit of manpower over-allocation, for a specific
time interval (each row).

=======================================================
Time-interval vs Demand(#) and Over-allocation(O)
-------------------------------------------------------
01 ######### ( 3/ 0)
02 ############################## (10/ 0)
03 ##################OOOOOOOOOOOO ( 6/ 4)
04 ################################# (11/ 0)
05 #########OOOOOOOOOOOOOOO ( 3/ 5)
06 #########OOOOOOOOOOOOOOO ( 3/ 5)
07 ##################OOOOOOOOOOOO ( 6/ 5)
08 ############OOOOOOOOOOOOOOO ( 4/ 5)
09 #########OOOOOOOOOOOOOOO ( 3/ 5)
10 ##################OOOOOO ( 6/ 2)
11 ###############OOOOOOOOOOOOOOO ( 5/ 5)
12 ############################OOOOOOOOOOOO ( 8/ 4)
13 ######################################## (12/ 0)
14 ############################OOOOOOOOOOOO ( 8/ 4)
15 ###############################OOOOOOOOO ( 9/ 3)
16 ###############################OOOOOOOOO ( 9/ 3)
17 ###############OOOOOOOOOOOOOOO ( 5/ 5)
18 #########OOOOOOOOOOOOOOO ( 3/ 5)
19 ###############OOOOOOOOOOOOOOO ( 5/ 5)
-------------------------------------------------------
Note: Time 01 = 0500-0600hr, .. , Time 19 = 0000-0100hr

Fig. 1. Calculated allocation vs demand (output of DGP)

A duty amounts to a continuous stretch of work contribution (from a single
staff) for a number of time intervals, with a gap of one meal break. At certain time
interval(s), the calculated allocation(s) will be over and above the corresponding
demand(s). An optimal DGP solution nevertheless minimizes such total over
allocation. This (daily) result in Figure 1 leads to a total over allocation (

∑
dh

in (1) above) of 65 man-hours. This yields, with a total demand (
∑
Rh in (1)
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above) of 119, an effective overall ‘utilization’ (ratio) of

Ratio ≡ 100×
∑
Rh∑

Rh +
∑
dh

= 64.67%.

We remark that this performance measure of Ratio is directly (or inversely)
proportional to the base model’s first criterion objective function value

∑
cijxij ,

where the coefficients cij are taken to be 1 throughout this paper. This fact can
be readily seen as follows. From (0), we have

Min
∑

xij = Max
1∑
xij

;

and from (1), summing over all time intervals gives
∑
xij−

∑
dh =

∑
Rh. (This

is also clear from Figure 1 with its areas interpretation: Total demand (#) plus
total over-allocation (O) equals total allocation.) Hence

Ratio = 100×
∑
Rh∑

Rh +
∑
dh

= 100×
∑
Rh∑
xij

=
Constant∑

xij
.

Therefore Ratio is the normalized performance measure for the GP’s first cri-
teria of staff over-allocation. In the extreme (ideal) case of zero over-allocation
(
∑
dh = 0), it attains its maximum 100% level. It is especially appropriate for

comparing different problem instances of different demand patterns generated.

The 25 randomized data sets
Besides this illustration with our project’s sample results in Figure 1 above,

randomly generated numerical problem instances (with the same model parame-
ters) are reported in Table 1 below to give evidence of the model’s robustness.
(We allowed the break index j ∈ {1, · · · , J} – implying a totally flexible break
decision interval – for this particular randomization experiment. Further numeri-
cal results described later will study the effect on restriction of this break index
parameter.) These 25 sets of randomly generated demand requirements are taken
from Chu and So [8] where the details of the randomization are provided. For the-
se sets of data (values given in the Appendix A.1), the mean ‘utilization’ ratio is
in fact comparable at 74.83%, with a mean level 4.6 of maximum over allocation.
Regarding the columns in Table 1, MinR, MaxR, AvgR and TtlR are, respective-
ly, minimum, maximum, average and total requirements generated; while TtlD,
Ratio and MaxD are the total (over-achievement) deviation, the ‘utilization’ ratio
and the maximum deviation from the DGP model outputs for each data set.
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Table 1
Results of 25 random problem instances

(i) Set# MinR MaxR AvgR TtlR TtlD Ratio MaxD
(1) 9 4 12 7.53 143 17 89.38% 2
(2) 18 4 13 9.84 187 29 86.57% 3
(3) 24 3 13 8.63 164 28 85.42% 3
(4) 7 3 13 9.26 176 32 84.62% 3
(5) 2 3 11 7.47 142 26 84.52% 3
(6) 10 3 13 7.63 145 31 82.39% 3
(7) 17 4 13 8.05 153 39 79.69% 3
(8) 6 3 12 7.42 141 43 76.63% 4
(9) 3 6 13 8.63 164 52 75.93% 4
(10) 25 3 13 7.74 147 53 73.50% 4
(11) 22 4 13 8.53 162 38 81.00% 5
(12) 23 3 13 8.68 165 51 76.39% 5
(13) 8 3 12 7.58 144 48 75.00% 5
(14) 21 3 13 7.84 149 51 74.50% 5
(15) 19 3 13 8.11 154 54 74.04% 5
(16) 11 3 13 7.95 151 57 72.60% 5
(17) 14 3 13 7.26 138 54 71.88% 5
(18) 13 3 13 8.16 155 61 71.76% 5
(19) 1 3 13 8.32 158 66 70.54% 5
(20) 4 3 13 7.42 141 59 70.50% 5
(21) 5 3 13 7.42 141 59 70.50% 5
(22) 15 4 13 9.63 183 81 69.32% 6
(23) 16 3 13 6.68 127 81 61.06% 6
(24) 20 3 13 7.63 145 111 56.64% 8
(25) 12 4 13 7.84 149 115 56.44% 8

Avg 3.36 12.80 8.05 153.0 53.44 74.83% 4.60

We present the 25 sets of outcomes re-ordered in increasing value of D
(=MaxD); and for the same MaxD, in decreasing utilization (=Ratio) order. Ar-
ranging the 25 sets in this way, it is very noticeable from the last two columns
(Ratio, MaxD) that the performance of the computed results (i.e. the Ratio) is hi-
ghly correlated with the resulting maximum (time-period specific) over allocation
(i.e. the MaxD). This ranges from close to 90% utilization with a corresponding
maximum over allocation of only 2, to the eighty some percents of MaxD = 3,
to the seventy some percents when MaxD = 4 and 5, to the sixty some percents
of MaxD = 6, and finally down to only 56% with our largest computed MaxD,
being 8 for this 25 sets of randomized sample data. The additional insight gained
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from this experiment is therefore that the maximum over allocation is actually
a rather important performance indicator, even though it is often treated simply
as a smoothing measure of secondary priority goal.

Further numerical results (GP)
We further look at the numerical results of the effect on restriction of the

important break index parameter j in the decision variables xij . With the length
of a duty J = 9, three progressively move restrictive scenarios (as motivated by
actual applications) are considered: j ∈ [1, 9], j ∈ [3, 7], j ∈ [4, 6]. These same
25 data sets (with their detailed values given in the Appendix A.1) lead to the
GP outputs shown in Table 2.

Table 2
GP outputs for the 3 different scenarios
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As expected, scenario [1,9] performs the best and is naturally taken as the
benchmark for performance measures of low TtlD (first goal) and low MaxD
(second goal). Scenario [3,7] comes next and, with a mild nice suprise, attains
fully all 25 cases of the TtlD goal, but with now all cases except one (Set 6)
of higher MaxD values. Scenario [4,6] reaches only 17 cases (except for Sets
2,7,8,18,19,21,22,24) of the TtlD goal, with all cases of higher MaxD values
(and 12 cases compared to scenario [3,7]). Trade-offs between meal break re-
striction and performance measures, especially the maximum (interval specific)
over-allocation level MaxD are clearly evident in this comparison.

2. HEURISTICS ALGORITHMIC APPROACH

Concern on computation robustness of DGP, a GP with integer variables,
has led us to study the following “best-fitting” type heuristics. Indeed, the solution
time for our case application (results in Figure 1) is very fast of less than 1 minute.
However, the range of computational times for the 25 random instances in Table
1 is extremely large. For eight of the 25 cases, each takes more than 1.5 hours
on a Pantium PC, while the remaining 17 cases average to less than 1 minute.
Of the eight “hard” cases, four require manually fixing the single variable MaxD
to be integer and solving its LP relaxation instead, due to the fact that each of
their ILP times already exceeds our preset 10-hour limit.

(We remark here that the following heuristics has appeared in our elec-
tronic proceedings paper of a recent International MOPGP Conference [9]. It is
explicitly included here considering the difficulty of readers’ gaining access to
a paper in electronic proceedings.)

Minimax time-reversible heuristics
Starting at time interval 1 and marching in a time-forward manner, we add

each duty sequentially, selecting the break-hour which myopically minimizes its
chosen interval’s remaining demand (over its L covering intervals). Mathemati-
cally, denote

rh ≡ remaining demand at time h, h = 1, · · · ,H.

As we consider a duty starting from time i (when ri ­ 1), we add another duty
4xij = 1 such that j is chosen as the minimizing index in

ri+j−1 = Mink=1,···L ri+k−1.

Time intervals are processed from i = 1 to i = H+L−1 (forward). Note that each
chosen break-hour j is locally the time interval with the minimum rj (as defined
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above) and the maximum dj , which is the (current value of) over-allocation (when
the minimum rj is zero) at time interval j. (Note that dj × rj = 0, or dj can be
positive only when rj = 0.) Hence it is a minimax (and time-forward) greedy
heuristics.

An obvious improvement is to process the time intervals starting at time
H +L− 1 and working in a time-backward manner, i.e. from i = H +L− 1 to
i = 1. This results in a minimax (and time-backward) greedy heuristics.

Combining these two by taking the better performance gives what we call
a Minimax Time-reversible Heuristics. Its numerical performances for the same
set of 25 random problem instances are given in Table 3. It can be seen from
Table 3 that 20 out of 25 cases the (GP) optimal ‘utilization’ ratios are attained
(with 12 from Forward alone, and 19 from Backward alone). A perhaps rather
surprising further improvement is when we apply randomization to the choice of
break-hour j (replacing the above minimax rule). Here this actually gives a higher
number of 23 out of 25 cases of optimal ratios. (A side remark on computation:
Randomization results naturally vary among different computer runs. In our case,
the solution is taken from the best of iterations of 20,000 replicas, taking a total
of about 45 minutes on a Pentium PC. Each heuristics trial, in either the minimax
or the randomization case, takes negligible amount of computer time.)

Table 3
Heuristics Results of the 25 random problem instances

(0) (1) (2) (3) (4)
GP Solutions 25 74.83% 25 4.60

Heuristics (Minimax)
- Forward 12 70.89% 2 7.20
- Backward 19 73.67% 7 6.52
Combined (better of F+B) 20 74.05% 8 5.92
Heuristics (Randomized)
- Forward 20 74.12% 1 7.04
- Backward 22 74.38% 0 7.12
Combined (better of F+B) 22 74.38% 1 6.76
Complete Heuristics
(Minimax+Randomized, 25 74.83% 9 5.92
with time reversibility)

Note: Column (0) = Approach

(1) = Number of cases attaining optimal GP’s (Maximum) Ratios

(2) = Computed average Ratios

(3) = Number of cases attaining optimal GP’s (Minimum) MaxD’s

(4) = Computed average MaxD’s
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For our 25 problem instances, it turns out that together with the final help
from randomization, all 25 optimal (GP) ratios are attained by our heuristics. This
of course can never be assumed for other different data sets and/or larger scale
experiments. Indeed, in terms of the MaxD measure, our complete heuristics can
only achieve 9 out of 25 cases of optimal (GP) MaxD’s, as shown in Table 3. As
expected, the minimax heuristics performs rather better than the randomization
(alone) calculations on MaxD. Nevertheless, together all these point to the ro-
bust computing benchmark for the DGP optimization model, backed by efficient
heuristics as such.

Table 4
Heuristics outputs for the 3 different scenarios
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Further numerical results (heuristics)
Similar to the consideration given to GP computations, we further look

at the numerical results of the effect on restriction of the important break index
parameter j in the decision variables xij , for the heuristics. Again, with the length
of a duty J = 9, three progressively move restrictive scenarios (as motivated by
actual applications) are considered: j ∈ [1, 9], j ∈ [3, 7], j ∈ [4, 6]. These same
25 input data sets (with their detailed values given in the Appendix A.1) lead to
the numerical outputs shown in Table 4. The nice “surprise” here is that Table
4 reads rather consistently similar to Table 2. (See the shaded entries, which
indicate common values in both tables.) This consistency is also both in terms
of the three different cases attaining their individual different levels of the two
goals TtlD and MaxD, and the relative progressive degrees of performances (in
the goals). For these data sets at least, the heuristics are observed to be also very
robust with respect to the key parameter (break index) j of central importance,
besides the obvious first goal of TtlD.

3. THE DETAILED COMPARISONS

We have seen from Table 3 the competing performance of the heuristics
with respect to the GP solutions for the situation of j ∈ [1, 9]. Perfect performance
is scored on the first goal of TtlD, while worse-off level is recorded on the
second goal of MaxD (in Table 3). Here Table 5 gives a summary of the detailed
comparisons of all three scenarios of j ∈ [1, 9], j ∈ [3, 7], j ∈ [4, 6]. It can
be seen that out of 25 cases, the (best outputs of the) three heuritics achieve,
respectively 25,25,21 cases of their GP counterpart (optimal) solutions on TtlD;
and 9,10,8 cases on MaxD. (These are high-lighted as shaded entries in Table
5, which combines Tables 2 and 4.) While the heuristics is confirmed as very
competetive on TtlD, it is (intuitively expected to be) much less so on the second
goal MaxD. This is an vivid illustration of the superiority of a GP approach,
whenever its computation can be completed within an acceptable amount of
computer time and resources.

Three additional tables providing all details to the contributing (or relative)
performance of forward vs backward as well as potential benefit in randomization
are given in the Appendix A.3 for completeness. Table 6 below gives an overall
summary concerning these two aspects.
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Table 5
Comparison of heuristics vs GP performances for the 3 scenarios

Table 6
Forward vs backward & randomization aspect for the three scenarios

Scenario S1:(Forward)/(Backward) S2:(Forward)/(Backward) Best of 4

j ∈ [ 1, 9 ] (20, 11) / (22, 9) (12, 8) / (19, 14) (25, 9)

j ∈ [ 3, 7 ] (17, 14) / (19, 13) (24, 13) / (24, 7) (25, 10)

j ∈ [ 4, 6 ] (16, 13) / (17, 14) (16, 10) / (20, 9) (21, 8)

In Table 6, an ordered pair of entries (m,n) represent the numbers of cases
for the measures (TtlD, MaxD) computed by the heuristics succeed in attaining
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the optimal GP results. S1 denotes the heuristics randomly assigning the meal
break index over j ∈ [1, 9], j ∈ [3, 7], j ∈ [4, 6] — the three tested scenarios
indicated in Table 6 as row labels. S2 refers to the (heuristic) rule of assigning
j as the first available least (residual) demand time interval. (Hence the higher
values of (m,n) nearer and up to (25, 25) the better.) While more insight can be
gained from the detailed values from the tables in the Appendix A.3, it is already
evident from Table 6 that:

– It concurs with intuition that comparable MaxD values are regardless of the
direction of forward or backward computation (due to the symmetric or time-
reversibility problem nature).

– It is much less expected to see that the computed values of TtlD always benefit
from backward computations in all six pairs of scenario by time-reversibility
settings.

– Assigning meal break by the least demand heuristic rule (S1) works well only
when the choice of break time interval is wide (i.e. in the case of j ∈ [1, 9])
and is actually worse in the more restrictive cases (i.e. j ∈ [3, 7] and j ∈ [4, 6]),
for the TtlD goal, in comparison to randomized choices (S2).

– However, (S1) does work better on the whole with respect to the MaxD goal
than (S2), as might be expected heuristically.

Taking all of the above together, all four combinations of
S1:(forward/backword) and S2:(forward/backward) are essential compo-
nents of our minimax time-reversible heuristics. The complete heuristics fares
very well indeed, especially for the case of j ∈ [3, 7] which is particularly
important from an application point of view rendering it the best choice of
(meal break) implementation. This choice is further echoed in our final extensive
test of 1 000 new cases of similarly randomly generated input demand data.
The 1 000 cases were run by the heuristics for the three break time restriction
scenarios for a total of 3 000 runs. Out of them, 10 cases for each scenario
were solved to optimality by our DGP-GP code. Of these 30 selected cases, only
three fail to attain the GP’s optimal TtlD performance (Sets 301, 431, 751);
and they all belong to the most restrictve scenario of j ∈ [4, 6]. The results
are provided in the Appendix A.2, again for the sake of completeness (and
additional information on the performance issue on the MaxD goal as well).
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CONCLUDING REMARKS

The purpose of this paper is to report by way of DGP modeling and
its further extensive computational experience, the advantage of DGP’s readily
producing improvement over existing manual staff assignment. In this context, we
contrast this paper with an earlier work of Chu (2001), where the sole purpose
there was to apply DGP and its extended version for a single instance of real
data of the airport case study. Exact solutions (as shown in Figure 1 before) were
easily computed then for its set of input data.

The integer programming nature of DGP has since then led us from the
application to examining much more into DGP as an independent problem, with
its more intriguing computational robustness issue. Thus the key contribution of
this paper is the construction and the extensive computation experience of the
(now proven) effective heuristics, whenever exact GP computations are facing
difficulty with certain problem data instances. In short, the model’s usefulness
to the users is also strengthened by its computational robustness, in both exact
solutions and heuristics calculations.

APPENDIX

A.1. The 25 randomly generated input data sets
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A.2. The 30 selected samples from 1 000 randomized cases

A.3. The complete GP and heuristics outputs of the 25 data sets
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