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Abstract 
The utility of the rough set approach to multiple criteria decision support is relat-

ed to the nature of both, the input preferential information available in decision analysis, 
and the output of the analysis. As to the input, the rough set approach requires a set of 
decision examples. This is convenient for the acquisition of preferential information 
from decision makers. Very often in multiple criteria decision support, this information 
has to be given in terms of preference model parameters, such as importance weights, 
substitution ratios and various thresholds. Producing such information requires a signifi-
cant cognitive effort on the part of the decision maker. It is generally acknowledged that 
people often prefer to make exemplary decisions and cannot always explain them in 
terms of specific parameters. For this reason, the idea of inferring preference models 
from exemplary decisions provided by the decision maker is very attractive. Further-
more, the exemplary decisions may be inconsistent because of limited clear discrimina-
tion between values of particular criteria and because of hesitation on the part of the 
decision maker. These inconsistencies can convey important information that should be 
taken into account in the construction of the decision maker’s preference model. The 
rough set approach is intended to deal with inconsistency and this is a major argument to 
support its application to multiple criteria decision analysis. The output of the analysis, 
i.e. the model of preferences in terms of “if..., then...” decision rules, is very convenient 
for decision support because it is intelligible and speaks the same language as the deci-
sion maker. The rough set approach adapted to multiple criteria decision support is 
called Dominance-based Rough Set Approach (DRSA). DRSA is concordant with the 
concept of granular computing, however, the granules are dominance cones in evaluation 
space and not bounded sets as it is the case in the basic rough set approach. It is also 
concordant with the paradigm of computing with words, as it exploits ordinal, and not 
necessarily cardinal, character of data. We present DRSA for multiple criteria classifica-
tion, choice and ranking, as well as DRSA for decisions under risk. Finally, we compare 
DRSA with other decision support paradigms at an axiomatic level. 
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INTRODUCTION 
 
We present a knowledge discovery methodology for multiple attribute and 

multiple criteria decision support, which is based upon the concept of rough set 
proposed by Z. Pawlak [29, 30, 32]. Taking part in the development of rough set 
theory from the beginning, we adapted and extended its basic paradigm in many 
ways [31, 45, 46, 47]. For a long time, we also made attempts to employ rough 
set theory for decision support [33, 38, 39]. The standard rough set approach was 
not able, however, to deal with preference-ordered domains of attribute (then, 
called criteria) and preference-ordered decision classes, which are characteristic 
features of decision problems.  

In the late 90’s, adapting the standard rough set approach to knowledge 
discovery from preference-ordered data became a particularly challenging prob-
lem within the field of multiple criteria decision support. Why might it be so 
important? The answer is related to the nature of the input preferential infor-
mation available in multiple criteria decision analysis and of the output of that 
analysis. As to the input, the rough set approach requires a set of decision exam-
ples. Such representation is convenient for the acquisition of preferential infor-
mation from decision makers. Very often in multiple criteria decision analysis, 
this information has to be given in terms of preference model parameters, such 
as importance weights, substitution ratios and various thresholds. Producing 
such information requires a significant cognitive effort on the part of the deci-
sion maker. It is generally acknowledged that people often prefer to make exem-
plary decisions and cannot always explain them in terms of specific parameters.  

For this reason, the idea of inferring preference models from exemplary 
decisions provided by the decision maker is very attractive. Furthermore, the 
exemplary decisions may be inconsistent because of limited clear discrimination 
between values of particular criteria and because of hesitation on the part of the 
decision maker. These inconsistencies cannot be considered as a simple error or 
as noise. They can convey important information that should be taken into ac-
count in the construction of the decision maker’s preference model. The rough 
set approach is intended to deal with inconsistency and this is a major argument 
to support its application to multiple criteria decision analysis. The output of the 
analysis, i.e. the model of preferences in terms of decision rules, is very conven-
ient for decision support because it is intelligible and speaks the same language 
as the decision maker.  

An extension of the standard rough set approach which enables the analy-
sis of preference-ordered data was proposed in [6, 7, 8, 11, 15]. This extension, 
called the Dominance-based Rough Set Approach (DRSA) is mainly based on 
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the substitution of the indiscernibility relation by a dominance relation in the 
rough approximation of decision classes. An important consequence of this fact 
is the possibility of inferring (from exemplary decisions) a preference model in 
terms of decision rules which are logical statements of the type “if..., then...”. 
The separation of certain and uncertain knowledge about the decision maker’s 
preferences results from the distinction of different kinds of decision rules, in-
duced from lower approximations of decision classes or from the difference 
between upper and lower approximations (composed of inconsistent examples). 
Such a preference model is more general than the traditional functional models 
considered within multiattribute utility theory, or the relational models consid-
ered, for example, in outranking methods. This conclusion has been acknowl-
edged by a thorough study of axiomatic foundations [16, 17, 42]. DRSA has also 
been used as a tool for inducing parameters of other preference models than the 
decision rules, like the relational outranking model used in multiple criteria 
choice problems [37]. 

As to the application side of the rough set approach, it has been used for 
discovering regularities in complex phenomena, like stormwater pollution [36], 
bankruptcy risk of firms applying for a bank credit [38], finding indications for  
a surgery treatment [31] and classification of Siberian forests [2]. A special at-
tention has been paid to application of the rough set approach in clinical prac-
tice, to support some diagnostic and managerial decisions in hospital emergency 
rooms. This application required extension of the rough set approach to handle 
incomplete data. The results were implemented as a “decision making core” of  
a clinical decision support system developed on a mobile platform [27]. The 
system, called MET (Mobile Emergency Triage), supports triage of pediatric 
patients with various acute conditions. It underwent a clinical trial in the Chil-
dren’s Hospital of Eastern Ontario in Ottawa [50].  

Since the first formulation of DRSA, we have proposed many extensions 
of the approach that make it a useful tool for many specific decision problems. 
In this survey, we characterize the basic DRSA approach and its main extensions 
(for complementary surveys see [18, 19, 20, 45]). 

The chapter is organized as follows. In the next section, we introduce the 
concept of knowledge discovery from preference-ordered data. Then, we present 
the basic Dominance-based Rough Set Approach (DRSA) and in the following 
sections we review its main extensions. In the last section some conclusions are 
given and current research directions are outlined. 
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1. KNOWLEDGE DISCOVERY FROM PREFERENCE  
ORDERED DATA 

 
The data set in which classification patterns are searched for is called the 

learning sample. The learning of patterns from this sample should take into ac-
count available prior knowledge that may include the following items (see [40]): 
(i) Domains of attributes, i.e. sets of values that an attribute may take while 

being meaningful to the user. 
(ii) A division of attributes into condition and decision attributes, which restricts 

the range of patterns to functional relations between condition and decision 
attributes. 

(iii) A preference order in the domains of some attributes and a semantic correla-
tion between pairs of these attributes, requiring the patterns to observe the 
dominance principle. 

In fact, item (i) is usually taken into account in knowledge discovery. With 
this prior knowledge only, one can discover patterns called association rules 
which show strong relationships between values of some attributes, without fix-
ing which attributes will be on the condition and which ones on the decision side 
in all rules. 

If item (i) is combined with item (ii) in the prior knowledge, then one can 
consider a partition of the learning sample into decision classes defined by deci-
sion attributes. The patterns to be discovered have then the form of decision 
trees or decision rules representing functional relations between condition and 
decision attributes. These patterns are typically discovered by machine learning 
and data mining methods [28]. As there is a direct correspondence between  
a decision tree and rules, we will concentrate our attention on decision rules only. 

As item (iii) is crucial for decision support, let us explain it in more detail. 
Consider an example of a data set concerning pupils’ achievements in a high 
school. Suppose that among the attributes describing the pupils there are results 
in Mathematics (Math) and Physics (Ph). There is also a General Achievement 
(GA) result. The domains of these attributes are composed of three values: bad, 
medium and good. This information constitutes item (i) of prior knowledge. Item 
(ii) is also available because, clearly, Math and Ph are condition attributes while 
GA is a decision attribute. The preference order of the attribute values is obvi-
ous: good is better than medium and bad, and medium is better than bad. It is 
known, moreover, that both Math and Ph are semantically correlated with GA. 
This is, precisely, item (iii) of the prior knowledge.  

Attributes with preference-ordered domains are called criteria because 
they involve an evaluation. We will use the name of regular attributes for those 



PRODUCTION PLANNING AND CONTROL… 

 

 

13 

attributes whose domains are not preference-ordered. Semantic correlation be-
tween two criteria (condition and decision) means that an improvement on one 
criterion should not worsen the evaluation on the second criterion, while other 
attributes and criteria are unchanged. In our example, an improvement of a pu-
pil’s score in Math or Ph, with other attribute values unchanged, should not 
worsen the pupil’s general achievement (GA), but rather improve it. In general, 
semantic correlation between condition criteria and decision criteria requires that 
an object x dominating object y on all condition criteria (i.e. x having evaluations 
at least as good as y on all condition criteria) should also dominate y on all deci-
sion criteria (i.e. x should have evaluations at least as good as y on all decision 
criteria). This principle is called the dominance principle (or Pareto principle) 
and it is the only objective principle that is widely agreed upon in the multiple 
criteria comparisons of objects. 

Let us consider two questions: 
− What classification patterns can be drawn from the pupils’ data set?  
− How does item (iii) influences the classification patterns? 

The answer to the first question is: “if…, then…” decision rules. Each de-
cision rule is characterized by a condition profile and a decision profile, corre-
sponding to vectors of threshold values of regular attributes and criteria in the 
condition and decision parts of the rule, respectively. The answer to the second 
question is that condition and decision profiles of a decision rule should observe 
the dominance principle if the rule has at least one pair of semantically correlat-
ed criteria spanned over the condition and decision part. We say that one profile 
dominates another if they both involve the same values of regular attributes and 
the values of criteria of the first profile are not worse than the values of criteria 
of the second profile. 

Let us explain the dominance principle with respect to decision rules on 
the pupils’ example. Suppose that two rules induced from the pupils’ data set 
relate Math and Ph on the condition side, with GA on the decision side: 

rule #1: if Math = medium   and   Ph = medium, then GA = good, 
rule #2: if Math = good   and   Ph = medium, then GA = medium. 

The two rules do not observe the dominance principle because the condition 
profile of rule #2 dominates the condition profile of rule #1, while the decision 
profile of rule #2 is dominated by the decision profile of rule #1. Thus, in the sense 
of the dominance principle, the two rules are inconsistent, i.e. they are wrong.  

One could say that the above rules are true because they are supported by 
examples of pupils from the learning sample, but this would mean that the ex-
amples are also inconsistent. The inconsistency may come from many sources. 
Examples include: 
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− Missing attributes (regular ones or criteria) in the description of objects. 
Maybe the data set does not include such attributes as the opinion of the pu-
pil’s tutor expressed only verbally during an assessment of the pupil’s GA by 
a school assessment committee.  

− Unstable preferences of decision makers. Maybe the members of the school 
assessment committee changed their view on the influence of Math on GA 
during the assessment. 

Handling these inconsistencies is of crucial importance for knowledge 
discovery. They cannot be simply considered as noise or error to be eliminated 
from data, or amalgamated with consistent data by some averaging operators. 
They should be identified and presented as uncertain patterns. 

If item (iii) were ignored in prior knowledge, then the handling of the 
above mentioned inconsistencies would be impossible. Indeed, there would be 
nothing wrong with rules #1 and #2. They would be supported by different ex-
amples discerned by considered attributes. 

 It has been acknowledged by many authors that rough set theory provides 
an excellent framework for dealing with inconsistency in knowledge discovery 
[26, 30, 32, 34, 35, 39]. The paradigm of rough set theory is that of granular 
computing, because the main concept of the theory (rough approximation of  
a set) is built up of blocks of objects which are indiscernible by a given set of 
attributes, called granules of knowledge. In the space of regular attributes, the 
granules are bounded sets. Decision rules induced from rough approximation of 
a classification are also built up of such granules. While taking into account prior 
knowledge of type (i) and (ii), the rough approximation and the inherent rule 
induction ignore, however, prior knowledge of type (iii). In consequence, the 
resulting decision rules may be inconsistent with the dominance principle. 

The authors have proposed an extension of the granular computing para-
digm that enables us to take into account prior knowledge of type (iii), in addi-
tion to either (i) only [23], or (i) and (ii) together [8, 15, 40]. The combination of 
the new granules with the idea of rough approximation is called the Dominance-
based Rough Set Approach (DRSA). 

In the following, we present the concept of granules which permit us to 
handle prior knowledge of type (iii) when inducing decision rules. 

Let U be a finite set of objects (universe) and let Q be a finite set of attrib-
utes divided into a set C of condition attributes and a set D of decision attributes 

where C∩D = ∅. Also, let XC = ∏
=

C

q
qX

1
 and XD = ∏

=

D

q
qX

1
 be attribute spaces 

corresponding to sets of condition and decision attributes, respectively. The ele-
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ments of XC and XD can be interpreted as possible evaluation of objects on at-
tributes from set C = {1,…,|C|} and from set D = {1,…,|D|}, respectively. There-
fore, Xq is the set of possible evaluations of considered objects with respect to 
attribute q. The value of object x on attribute q∈Q is denoted by xq. Objects x 
and y are indiscernible by P⊆C if xq = yq for all q∈P and, analogously, objects x 
and y are indiscernible by R⊆D if xq = yq for all q∈R. The sets of indiscernible 
objects are equivalence classes of the corresponding indiscernibility relation IP 
or IR. Moreover, IP(x) and IR(x) denote equivalence classes including object x. ID 
generates a partition of U into a finite number of decision classes Cl = {Clt, t = 
1,...,n}. Each x∈U belongs to one and only one class Clt∈Cl.  

The above definitions take into account prior knowledge of type (i) and 
(ii) only. In this case, the granules of knowledge are bounded sets in XP and XR 
(P⊆C and R⊆D), defined by partitions of U induced by the indiscernibility rela-
tions IP and IR, respectively. Then, classification patterns to be discovered are 
functions representing granules IR(x) by granules IP(x) in the condition attribute 
space XP, for any P⊆C and for any x∈U. 

If prior knowledge includes item (iii) in addition to (i) and (ii), then the 
indiscernibility relation is unable to produce granules in XC and XD that would 
take into account the preference order. To do so, the indiscernibility relation has 
to be substituted by a dominance relation in XP and XR (P⊆C and R⊆D). Sup-
pose, for simplicity, that all condition attributes in C and all decision attributes in 
D are criteria, and that C and D are semantically correlated. 

Let qf  be a weak preference relation on U (often called outranking) rep-

resenting a preference on the set of objects with respect to criterion q∈{C∪D}. 
Now, xq qf yq means “xq is at least as good as yq with respect to criterion q”. On 

the one hand, we say that x dominates y with respect to P⊆C (shortly, x P-
dominates y) in the condition attribute space XP (denoted by xDPy) if xq qf yq for 

all q∈P. Assuming, without loss of generality, that the domains of the criteria are 
numerical (i.e. Xq⊆R for any q∈C ) and that they are ordered so that the prefer-
ence increases with the value, we can say that xDPy is equivalent to xq≥yq for all 
q∈P, P⊆C. Observe that for each x∈XP, xDPx, i.e. P-dominance is reflexive. On 
the other hand, the analogous definition holds in the decision attribute space XR 
(denoted by xDRy), where R⊆D. 

The dominance relations xDPy and xDRy (P⊆C and R⊆D) are directional 
statements where x is a subject and y is a referent.  

If x∈XP is the referent, then one can define a set of objects y∈XP dominat-
ing x, called the P-dominating set (denoted by DP

+ (x)) and defined as DP
+ (x) = 

{y∈U: yDPx}.  



Kazimierz Zaraś, Hamdjatou Kane, Maciej Nowak 

 

16 

If x∈XP is the subject, then one can define a set of objects y∈XP dominat-
ed by x, called the P-dominated set (denoted by DP

− (x)) and defined as DP
− (x) = 

{y∈U: xDPy}.  
P-dominating sets DP

+ (x) and P-dominated sets DP
− (x) correspond to posi-

tive and negative dominance cones in XP, with the origin x. 
With respect to the decision attribute space XR (where R⊆D), the R-

dominance relation enables us to define the following sets: 
 Cl x

R
≥  = {y∈U: yDRx}, Cl x

R
≤  = {y∈U: xDRy}. 

qtCl = {x∈XD: xq=tq} is a decision class with respect to q∈D. Cl x
R
≥  is called 

the upward union of classes, and Cl x
R
≤  is the downward union of classes. If 

x∈Cl x
R
≥ , then x belongs to class 

qtCl , xq = tq, or better, on each decision attribute 

q∈R. On the other hand, if x∈Cl x
R
≤ , then x belongs to class 

qtCl , xq = tq, or worse, 

on each decision attribute q∈R. The downward and upward unions of classes corre-
spond to the positive and negative dominance cones in XR, respectively.  

In this case, the granules of knowledge are open sets in XP and XR defined 
by dominance cones DP

+ (x), DP
− (x) (P⊆C) and Cl x

R
≥ , Cl x

R
≤  (R⊆D), respectively. 

Then, classification patterns to be discovered are functions representing granules 
Cl x

R
≥ , Cl x

R
≤  by granules DP

+ (x), DP
− (x), respectively, in the condition attribute 

space XP, for any P⊆C and R⊆D and for any x∈XP. 
In both cases above, the functions are sets of decision rules. 

 
 
2. THE DOMINANCE-BASED ROUGH SET APPROACH 

(DRSA) 
 

2.1. Granular computing with dominance cones 
 

When discovering classification patterns, a set D of decision attributes is, 
usually, a singleton, D = {d}. Let us take this assumption for further presenta-
tion, although it is not necessary for the Dominance-Based Rough Set Approach. 
The decision attribute d makes a partition of U into a finite number of classes, Cl 
= {Clt, t=1,...,n}. Each x∈U belongs to one and only one class, Clt∈Cl. The up-
ward and downward unions of classes boil down, respectively, to:  

U
ts

st ClCl
≥

≥ =  
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U
ts

st ClCl
≤

≤ =  

where t = 1,...,n. Notice that for t = 2,...,n we have Clt
≥ =U– Clt

≤
−1 , i.e. all the 

objects not belonging to class Clt or better, belong to class Clt-1 or worse. 
Let us explain how the rough set concept has been generalized to the 

Dominance-Based Rough Set Approach in order to enable granular computing 
with dominance cones (for more details, see [8, 11, 14, 18, 19, 20, 45]). 

Given a set of criteria, P⊆C, the inclusion of an object x∈U to the upward 
union of classes Clt

≥ , t = 2,…,n, is inconsistent with the dominance principle if 
one of the following conditions holds:  
− x belongs to class Clt or better but it is P-dominated by an object y belonging 

to a class worse than Clt, i.e. x∈Clt
≥  but )(xDP

+ ∩ ≤
−1tCl ≠ ∅, 

− x belongs to a worse class than Clt but it P-dominates an object y belonging 
to class Clt or better, i.e. x∉Clt

≥  but )(xDP
− ∩Clt

≥ ≠ ∅. 
If, given a set of criteria P⊆C, the inclusion of x∈U to Clt

≥ , where t = 2,…,n, 
is inconsistent with the dominance principle, we say that x belongs to Clt

≥  with 
some ambiguity. Thus, x belongs to Clt

≥  without any ambiguity with respect to 
P⊆C, if x∈Clt

≥  and there is no inconsistency with the dominance principle. This 
means that all objects P-dominating x belong to Clt

≥ , i.e. )(xDP
+ ⊆Clt

≥ . Geomet-
rically, this corresponds to the inclusion of the complete set of objects contained 
in the positive dominance cone originating in x, in the positive dominance cone 
Clt

≥  originating in Clt. 
Furthermore, x possibly belongs to Clt

≥  with respect to P⊆C if one of the 
following conditions holds: 
− According to decision attribute d, x belongs to Clt

≥  
− According to decision attribute d, x does not belong to Clt

≥ , but it is inconsistent 
in the sense of the dominance principle with an object y belonging to Clt

≥ . 
In terms of ambiguity, x possibly belongs to Clt

≥  with respect to P⊆C, if x 
belongs to Clt

≥  with or without any ambiguity. Due to the reflexivity of the dom-
inance relation DP, the above conditions can be summarized as follows: x possi-
bly belongs to class Clt or better, with respect to P⊆C, if among the objects P-
dominated by x there is an object y belonging to class Clt or better, i.e. 

)(xDP
− ∩Clt

≥ ≠ ∅. Geometrically, this corresponds to the non-empty intersection 
of the set of objects contained in the negative dominance cone originating in x, 
with the positive dominance cone Clt

≥  originating in Clt. 
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For P⊆C, the set of all objects belonging to Clt
≥  without any ambiguity 

constitutes the P-lower approximation of Clt
≥ , denoted by )(ClP t

≥ , and the set 
of all objects that possibly belong to Clt

≥  constitutes the P-upper approximation 
of Clt

≥ , denoted by )(ClP t
≥ . More formally, we can say: 

)(ClP t
≥ = {x∈U: )(xDP

+ ⊆Clt
≥ } 

)(ClP t
≥ = {x∈U: )(xDP

− ∩Clt
≥ ≠ ∅} 

where t=1,...,n. Analogously, one can define the P-lower approximation and the 
P-upper approximation of Clt

≤  as follows: 

)(ClP t
≤ = {x∈U: )(xDP

− ⊆Clt
≤ } 

)(ClP t
≤ = {x∈U: )(xDP

+ ∩Clt
≤ ≠ ∅} 

where t=1,...,n. The P-lower and P-upper approximations so defined satisfy the 
following inclusion properties for each t∈{1,…,n} and for all P⊆C: 

)(ClP t
≥ ⊆Clt

≥ ⊆ )(ClP t
≥  

)(ClP t
≤ ⊆Clt

≤ ⊆ )(ClP t
≤ . 

All the objects belonging to Clt
≥  and Clt

≤  with some ambiguity constitute 
the P-boundary of Clt

≥  and Clt
≤ , denoted by BnP( Clt

≥ ) and BnP( Clt
≤ ), respec-

tively. They can be represented, in terms of upper and lower approximations, as 
follows:  

BnP( Clt
≥ ) = )(ClP t

≥ – )(ClP t
≥  

BnP( Clt
≤ ) = )(ClP t

≤ – )(ClP t
≤  

where t = 1,...,n. The P-lower and P-upper approximations of the unions of classes 
Clt

≥  and Clt
≤  have an important complementarity property. It says that if object x 

belongs without any ambiguity to class Clt or better, then it is impossible that it 
could belong to class Clt-1 or worse, i.e. )(ClP t

≥ = U– )( 1
≤
−tClP , t = 2,...,n.  

Due to the complementarity property, BnP(Clt
≥ ) = BnP( ≤

−1tCl ), for t = 2,...,n, 
which means that if x belongs with ambiguity to class Clt or better, then it also 
belongs with ambiguity to class Clt-1 or worse.  

From the knowledge discovery point of view, P-lower approximations of un-
ions of classes represent certain knowledge given by criteria from P⊆C, while P-
upper approximations represent possible knowledge and the P-boundaries contain 
doubtful knowledge given by the criteria from P⊆C. 

The above definitions of rough approximations are based on a strict appli-
cation of the dominance principle. However, when defining non-ambiguous ob-
jects, it is reasonable to accept a limited proportion of negative examples, partic-
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ularly for large data tables. This extended version of the Dominance-Based 
Rough Set Approach is called the Variable-Consistency Dominance-Based 
Rough Set Approach model [21]. 

For any P⊆C, we say that x∈U belongs to ≥
tCl  with no ambiguity at con-

sistency level l∈(0, 1], if x∈ ≥
tCl  and at least l×100% of all objects y∈U domi-

nating x with respect to P also belong to ≥
tCl , i.e. 

( )( )
( )( )xDcard

ClxDcard

P

tP
+

≥+ ∩
≥l 

The level l is called the consistency level because it controls the degree of 
consistency between objects qualified as belonging to ≥

tCl  without any ambiguity. 
In other words, if l<1, then at most (1–l)×100% of all objects y∈U dominating x 
with respect to P do not belong to ≥

tCl and thus contradict the inclusion of x in ≥
tCl . 

Analogously, for any P⊆C we say that x∈U belongs to Clt
≤  with no am-

biguity at consistency level l∈(0, 1], if x∈Clt
≤  and at least l×100% of all the 

objects y∈U dominated by x with respect to P also belong to Clt
≤ , i.e.  

( )( )
( )( )xDcard

ClxDcard

P

tP
−

≤− ∩
≥l 

Thus, for any P⊆C, each object x∈U is either ambiguous or non-
ambiguous at consistency level l with respect to the upward union ≥

tCl  (t = 
2,...,n) or with respect to the downward union ≤

tCl  (t = 1,...,n–1). 
The concept of non-ambiguous objects at some consistency level l leads 

naturally to the definition of P-lower approximations of the unions of classes 
≥
tCl  and ≤

tCl  which can be formally presented as follows: 

( )≥tl ClP  = {x∈ ≥
tCl : ( )( )

( )( )xDcard
ClxDcard

P

tP
+

≥+ ∩
≥l} 

( )≤tl ClP  = {x∈ ≤
tCl : ( )( )

( )( )xDcard
ClxDcard

P

tP
−

≤− ∩
≥l} 

Given P⊆C and consistency level l, we can define the P-upper approxi-
mations of ≥

tCl  and ≤
tCl , denoted by ( )≥tl ClP  and ( )≤tl ClP , respectively, by 

complementation of ( )≤
−1t

l ClP  and ( )≥
+1t

l ClP with respect to U as follows: 

( )≥tl ClP  = U– ( )≤
−1t

l ClP  
( )≤tl ClP  = U– ( )≥

+1t
l ClP  
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( )≥tl ClP  can be interpreted as the set of all the objects belonging to ≥
tCl , 

which are possibly ambiguous at consistency level l. Analogously, ( )≤tl ClP  can 
be interpreted as the set of all the objects belonging to ≤

tCl , which are possibly 
ambiguous at consistency level l. The P-boundaries (P-doubtful regions) of ≥

tCl  
and ≤

tCl  are defined as:  

BnP( ≥
tCl ) = ( )≥tl ClP – ( )≥tl ClP  

BnP( ≤
tCl ) = ( )≤tl ClP – ( )≤tl ClP  

where t = 1,...,n. The variable consistency model of the Dominance-based 
Rough Set Approach provides some degree of flexibility in assigning objects to 
lower and upper approximations of the unions of decision classes. It can easily 
be demonstrated that for 0<l’<l≤1 and t = 2,...,n,  

( )≥tl ClP  ⊆ ( )≥t'l ClP  and ( )≥t'l ClP  ⊆ ( )≥tl ClP  

For every P⊆C, the objects being consistent in the sense of the dominance 
principle with all upward and downward unions of classes are the objects P-
correctly classified. For every P⊆C, the quality of approximation of classifica-
tion Cl by the set of criteria P is defined as the ratio between the number of P-
correctly classified objects and the number of all the objects in the data sample 
set. Since the objects which are P-correctly classified are those that do not be-
long to any P-boundary of unions Clt

≥  and Clt
≤ , t = 1,...,n, the quality of approx-

imation of classification Cl by set of criteria P, can be written as  
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( )ClPγ  can be seen as a measure of the quality of knowledge that can be 
extracted from the data table, where P is the set of criteria and Cl is the consid-
ered classification.  

Each minimal subset P⊆C such that ( )ClPγ  = ( )ClCγ  is called a reduct of 
Cl and is denoted by ClRED . Note that a decision table can have more than one 
reduct. The intersection of all reducts is called the core and is denoted by 

ClCORE . Criteria from ClCORE  cannot be removed from the data sample set 
without deteriorating the knowledge to be discovered. This means that in set C 
there are three categories of criteria: 
− Indispensable criteria included in the core, 
− Exchangeable criteria included in some reducts but not in the core, 
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− Redundant criteria being neither indispensable nor exchangeable, thus not 
included in any reduct. 

Note that reducts are minimal subsets of attributes and criteria conveying 
the relevant knowledge contained in the learning sample. This knowledge is 
relevant for the explanation of patterns in a given decision table but not neces-
sarily for prediction. 

It has been shown in [8, 12] that the quality of classification satisfies 
properties of set functions which are called fuzzy measures. For this reason, we 
can use the quality of classification for the calculation of indices which measure 
the relevance of particular attributes and/or criteria, in addition to the strength of 
interactions between them. The useful indices are: the value index and interac-
tion indices of Shapley and Banzhaf; the interaction indices of Murofushi-
Soneda and Roubens; and the Möbius representation. All these indices can help 
to assess the interdependence of the considered attributes and criteria, and can 
help to choose the best reduct. 
 

2.2. Induction of decision rules 
 

The dominance-based rough approximations of upward and downward 
unions of classes can serve to induce a generalized description of the objects 
contained in the decision table in terms of “if..., then...” decision rules. For a 
given upward or downward union of classes, Clt

≥  or ≤
sCl , the decision rules 

induced under a hypothesis that objects belonging to )(ClP t
≥  or )( ≤

sClP  are 
positive and all the others are negative, suggests an assignment to “class Clt or 
better”, or to “class Cls or worse”, respectively. On the other hand, the decision 
rules induced under a hypothesis that objects belonging to the intersection 

)()( ≥≤ ∩ ts ClPClP  are positive and all the others are negative, are suggesting an 
assignment to some classes between Cls and Clt (s<t). 

In the case of preference-ordered data it is meaningful to consider the fol-
lowing five types of decision rules: 
1) Certain D≥-decision rules. These provide lower profile descriptions for ob-

jects belonging to Clt
≥  without ambiguity:  

if xq1fq1rq1 and xq2fq2rq2 and … xqpfqprqp, then x∈Clt
≥ , 

where for each wq,zq∈Xq, “wqfqzq” means “wq is at least as good as zq” 
2) Possible D≥-decision rules. Such rules provide lower profile descriptions for 

objects belonging to Clt
≥  with or without any ambiguity:  

if xq1fq1rq1 and xq2fq2rq2 and … xqpfqprqp, then x possibly belongs to Clt
≥  
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3) Certain D≤-decision rules. These give upper profile descriptions for objects 
belonging to Clt

≤  without ambiguity:  

if xq1pq1rq1 and xq2pq2rq2 and … xqppqprqp, then x∈Clt
≤ , 

where for each wq,zq∈Xq, “wqpqzq” means “wq is at most as good as zq” 
4) Possible D≤-decision rules. These provide upper profile descriptions for ob-

jects belonging to Clt
≤  with or without any ambiguity:  

if xq1pq1rq1 and xq2pq2rq2 and … xqppqprqp, then x possibly belongs to Clt
≤  

5) Approximate D≥≤-decision rules. These represent simultaneously lower and 
upper profile descriptions for objects belonging to Cls∪Cls+1∪…∪Clt without 
the possibility of discerning the actual class:  

if xq1fq1rq1 and... xqkfqkrqk and xqk+1pqk+1rqk+1 and ... xqppqprqp,  
then x∈Cls∪Cls+1∪…∪Clt. 

In the left hand side of a D≥≤-decision rule we can have “xqfqrq” and “xqpqr'q”, 
where rq≤r'q, for the same q∈C. Moreover, if rq=r'q, the two conditions boil down to 
“xq∼qrq”, where for each wq,zq∈Xq, “wq∼qzq” means “wq is indifferent to zq”. 

An object x∈U supports decision rule r if its description is matching both 
the condition part and the decision part of the rule. We also say that decision rule 
r covers object x if it matches at least the condition part of the rule. Each deci-
sion rule is characterized by its strength defined as the number of objects sup-
porting the rule.  

A minimal rule is an implication where we understand that there is no oth-
er implication with a left hand side which has at least the same weakness (which 
means that it uses a subset of elementary conditions and/or weaker elementary 
conditions) and which has a right hand side that has at least the same strength 
(which means, a D≥- or a D≤-decision rule assigning objects to the same union 
or sub-union of classes, or a D≥≤-decision rule assigning objects to the same or 
larger set of classes). 

The rules of type 1) and 3) represent certain knowledge extracted from the 
data table, while the rules of type 2) and 4) represent possible knowledge. Rules 
of type 5) represent doubtful knowledge. 

The rules of type 1) and 3) are exact if they do not cover negative exam-
ples; they are probabilistic, otherwise. In the latter case, each rule is character-
ized by a confidence ratio, representing the probability that an object matching 
left hand side of the rule matches also its right hand side. Probabilistic rules con-
cord to the Variable-Consistency Dominance-based Rough Set Approach model 
mentioned above. 
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We will now comment upon the application of decision rules to some ob-
jects described by criteria from C. When applying D≥-decision rules to an object 
x, it is possible that x either matches the left hand side of at least one decision 
rule or it does not. In the case of at least one such match, it is reasonable to con-
clude that x belongs to class Clt, because it is the lowest class of the upward un-
ion Clt

≥  which results from intersection of all the right hand sides of the rules 
covering x. More precisely, if x matches the left hand side of rules ρ1, ρ2,…,ρm, 
having right hand sides x∈Clt

≥
1 , x∈Clt

≥
2 ,…, x∈Cltm

≥ , then x is assigned to class 
Clt, where t = max{t1,t2,…,tm}. In the case of no matching, we can conclude 
that x belongs to Cl1, i.e. to the worst class, since no rule with a right hand side 
suggesting a better classification of x is covering this object. 

Analogously, when applying D≤-decision rules to the object x, we can 
conclude that x belongs either to class Clz, (because it is the highest class of the 
downward union Clt

≤  resulting from the intersection of all the right hand sides 
of the rules covering x) or to class Cln, i.e. to the best class, when x is not cov-
ered by any rule. More precisely, if x matches the left hand side of rules ρ1, 
ρ2,…,ρm, having right hand sides x∈Clt

≤
1 , x∈Clt

≤
2 ,…, x∈Cltm

≤ , then x is assigned 
to class Clt, where t = min{t1,t2,…,tm}. In the case of no matching, it is con-
cluded that x belongs to the best class Cln because no rule with a right hand side 
suggesting a worse classification of x is covering this object. 

Finally, when applying D≥≤-decision rules to x, it is possible to conclude 
that x belongs to the union of all the classes suggested in the right hand side of 
the rules covering x. 

A set of decision rules is complete if it is able to cover all objects from the 
decision table in such a way that consistent objects are re-classified to their orig-
inal classes and inconsistent objects are classified to clusters of classes which 
refer to this inconsistency. Each set of decision rules that is complete and non-
redundant is called minimal. Note that an exclusion of any rule from this set 
makes it non-complete. 

In the case of the Variable-Consistency Dominance-based Rough Set Ap-
proach, the decision rules are induced from the P-lower approximations whose 
composition is controlled by the user-specified consistency level l. Consequent-
ly, the value of confidence α for the rule should be constrained from the bottom. 
It is reasonable to require that the smallest accepted confidence level of the rule 
should not be lower than the currently used consistency level l. Indeed, in the 
worst case, some objects from the P-lower approximation may create  
a rule using all the criteria from P thus giving a confidence α≥l.  



Kazimierz Zaraś, Hamdjatou Kane, Maciej Nowak 

 

24 

Observe that the syntax of decision rules induced from dominance-based 
rough approximations uses the concept of dominance cones: each condition pro-
file is a dominance cone in XC, and each decision profile is a dominance cone in 
XD. In both cases the cone is positive for D≥-rules and negative for D≤-rules. 

Also note that dominance cones which correspond to condition profiles 
can originate in any point of XC, without the risk of being too specific. Thus, in 
contrast to traditional granular computing, the condition attribute space XC need 
not be discretized. 

Some procedures for rule induction from rough approximations have been 
proposed in [22, 26, 49]. 

In [3], a new methodology for the induction of monotonic decision trees 
from dominance-based rough approximations of preference-ordered decision 
classes has been proposed. 
 

2.3. An illustrative example 
 
To illustrate the application of the DRSA to multiple criteria classification, 

we will use a part of some data provided by a Greek industrial bank ETEVA 
which finances industrial and commercial firms in Greece [6, 48]. A sample 
composed of 39 firms has been chosen for the study in co-operation with the 
ETEVA’s financial manager. The manager has classified the selected firms into 
three classes of bankruptcy risk. The sorting decision is represented by decision 
attribute d making a trichotomic partition of the 39 firms: 

D = A means “acceptable”, 
d = U means “uncertain”, 

d = NA means “non-acceptable”. 
The partition is denoted by Cl ={ClA, ClU, ClNA} and, obviously, class ClA 

is better than ClU which is better than ClNA. 
The firms were evaluated using the following twelve criteria (↑ means 

preference increasing with value and ↓ means preference decreasing with value): 
− A1 = earnings before interests and taxes/total assets, ↑ 
− A2 = net income/net worth, ↑ 
− A3 = total liabilities/total assets, ↓ 
− A4 = total liabilities/cash flow, ↓ 
− A5 = interest expenses/sales, ↓ 
− A6 = general and administrative expense/sales, ↓ 
− A7 = managers' work experience, ↑ (very low = 1, low = 2, medium = 3, high = 4, 

very high = 5) 
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− A8 = firm's market niche/position, ↑ (bad = 1, rather bad = 2, medium = 3, 
good = 4, very good = 5) 

− A9 = technical structure-facilities, ↑ (bad = 1, rather bad = 2, medium = 3, 
good = 4, very good = 5) 

− A10 = organization-personnel, ↑ (bad = 1, rather bad = 2, medium = 3, good = 4, 
very good = 5) 

− A11 = special competitive advantage of firms, ↑ (low = 1, medium = 2, high = 3, 
very high = 4) 

− A12 = market flexibility, ↑ (very low = 1, low = 2, medium = 3, high = 4, very 
high = 5) 

The first six criteria are cardinal (financial ratios) and the last six are ordi-
nal. The data table is presented in Table 1. 

The main questions to be answered by the knowledge discovery process 
were the following: 
− Is the information contained in Table 1 consistent ? 
− What are the reducts of criteria ensuring the same quality of approxi-mation 

of the multiple criteria classification as the whole set of criteria ? 
− What decision rules can be extracted from Table 1 ? 
− What are the minimal sets of decision rules ? 

We will answer these questions using the DRSA. The first result from this 
approach is a discovery that the financial data matrix is consistent for the com-
plete set of criteria C. Therefore, the C-lower and C-upper approximations of 
ClNA

≤ , ClU
≤  and ClU

≥ , Cl A
≥  are the same. In other words, the quality of approxi-

mation of all upward and downward unions of classes, as well as the quality of 
classification, is equal to 1. 

The second discovery is a set of 18 reducts of criteria ensuring the same 
quality of classification as the whole set of 12 criteria:  

1
ClRED ={A1, A4, A5, A7},   2

ClRED ={A2, A4, A5, A7}, 
3
ClRED ={A3, A4, A6, A7},   4

ClRED ={A4, A5, A6, A7}, 
5
ClRED ={A4, A5, A7, A8},   6

ClRED ={A2, A3, A7, A9}, 
7
ClRED ={A1, A3, A4, A7, A9},   8

ClRED ={A1, A5, A7, A9}, 
9
ClRED ={A2, A5, A7, A9},   10

ClRED ={A4, A5, A7, A9}, 
11
ClRED ={A5, A6, A7, A9},   12

ClRED ={A4, A5, A7, A10},  
13
ClRED ={A1, A3, A4, A7, A11},   14

ClRED ={A2, A3, A4, A7, A11}, 
15
ClRED ={A4, A5, A6, A12},   16

ClRED ={A1, A3, A5, A6, A9, A12}, 
17
ClRED ={A3, A4, A6, A11, A12},   18

ClRED ={A1, A2, A3, A6, A9, A11, A12}. 
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All the eighteen subsets of criteria are equally good and sufficient for the 
perfect approximation of the classification performed by ETEVA’s financial 
manager on the 39 firms. The core of Cl is empty (CORECl = ∅) which means 
that no criterion is indispensable for the approximation. Moreover, all the criteria 
are exchangeable and no criterion is redundant.  

The third discovery is the set of all decision rules. We obtained 74 rules 
describing ClNA

≤ , 51 rules describing ClU
≤ , 75 rules describing ClU

≥  and 79 rules 
describing Cl A

≥ . 
 

Table 3  

Financial data matrix 
Firm A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 d 
F1 16.4 14.5 59.82 2.5 7.5 5.2 5 3 5 4 2 4 A 
F2 35.8 67.0 64.92 1.7 2.1 4.5 5 4 5 5 4 5 A 
F3 20.6 61.75 75.71 3.6 3.6 8.0 5 3 5 5 3 5 A 
F4 11.5 17.1 57.1 3.8 4.2 3.7 5 2 5 4 3 4 A 
F5 22.4 25.1 49.8 2.1 5.0 7.9 5 3 5 5 3 5 A 
F6 23.9 34.5 48.9 1.7 2.5 8.0 5 3 4 4 3 4 A 
F7 29.9 44.0 57.8 1.8 1.7 2.5 5 4 4 5 3 5 A 
F8 8.7 5.4 27.4 3.3 4.5 4.5 5 2 4 4 1 4 A 
F9 25.7 29.7 46.8 1.7 4.6 3.7 4 2 4 3 1 3 A 
F10 21.2 24.6 64.8 3.7 3.6 8.0 4 2 4 4 1 4 A 
F11 18.32 31.6 69.3 4.4 2.8 3.0 4 3 4 4 3 4 A 
F12 20.7 19.3 19.7 0.7 2.2 4.0 4 2 4 4 1 3 A 
F13 9.9 3.5 53.1 4.5 8.5 5.3 4 2 4 4 1 4 A 
F14 10.4 9.3 80.9 9.4 1.4 4.1 4 2 4 4 3 3 A 
F15 17.7 19.8 52.8 3.2 7.9 6.1 4 4 4 4 2 5 A 
F16 14.8 15.9 27.94 1.3 5.4 1.8 4 2 4 3 2 3 A 
F17 16.0 14.7 53.5 3.9 6.8 3.8 4 4 4 4 2 4 A 
F18 11.7 10.01 42.1 3.9 12.2 4.3 5 2 4 2 1 3 A 
F19 11.0 4.2 60.8 5.8 6.2 4.8 4 2 4 4 2 4 A 
F20 15.5 8.5 56.2 6.5 5.5 1.8 4 2 4 4 2 4 A 
F21 13.2 9.1 74.1 11.21 6.4 5.0 2 2 4 4 2 3 U 
F22 9.1 4.1 44.8 4.2 3.3 10.4 3 4 4 4 3 4 U 
F23 12.9 1.9 65.02 6.9 14.01 7.5 4 3 3 2 1 2 U 
F24 5.9 -27.7 77.4 -32.2 16.6 12.7 3 2 4 4 2 3 U 
F25 16.9 12.4 60.1 5.2 5.6 5.6 3 2 4 4 2 3 U 
F26 16.7 13.1 73.5 7.1 11.9 4.1 2 2 4 4 2 3 U 
F27 14.6 9.7 59.5 5.8 6.7 5.6 2 2 4 4 2 4 U 
F28 5.1 4.9 28.9 4.3 2.5 46.0 2 2 3 3 1 2 U 
F29 24.4 22.3 32.8 1.4 3.3 5.0 2 3 4 4 2 3 U 
F30 29.7 8.6 41.8 1.6 5.2 6.4 2 3 4 4 2 3 U 
F31 7.3 -64.5 67.5 -2.2 30.1 8.7 3 3 4 4 2 3 NA 
F32 23.7 31.9 63.6 3.5 12.1 10.2 3 2 3 4 1 3 NA 
F33 18.9 13.5 74.5 10.0 12.0 8.4 3 3 3 4 3 4 NA 
F34 13.9 3.3 78.7 25.5 14.7 10.1 2 2 3 4 3 4 NA 
F35 -13.3 -31.1 63.0 -10.0 21.2 23.1 2 1 4 3 1 2 NA 
F36 6.2 -3.2 46.1 5.1 4.8 10.5 2 1 3 3 2 3 NA 
F37 4.8 -3.3 71.9 34.6 8.6 11.6 2 2 4 4 2 3 NA 
F38 0.1 -9.6 42.5 -20.0 12.9 12.4 1 1 4 3 1 3 NA 
F39 13.6 9.1 76.0 11.4 17.1 10.3 1 1 2 1 1 2 NA 
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The fourth discovery is the finding of minimal sets of decision rules. Sev-
eral minimal sets were found. One of them is shown below. The number in pa-
renthesis indicates the number of objects which support the corresponding rule, 
i.e. the rule strength: 
1. if f(x,A3)≥67.5 and f(x,A4)≥-2.2 and f(x,A6)≥8.7, then x∈ClNA

≤ , (4) 
2. if f(x,A2)≤3.3 and f(x,A7)≤2, then x∈ClNA

≤ , (5) 
3. if f(x,A3)≥63.6 and f(x,A7)≤3 and f(x,A9)≤3, then x∈ClNA

≤ , (4) 
4. if f(x,A2)≤12.4 and f(x,A6)≥5.6, then x∈ClU

≤ ,  (14) 
5. if f(x,A7)≤3, then x∈ClU

≤ , (18) 
6. if f(x,A2)≥3.5 and f(x,A5)≤8.5, then x∈ClU

≥ , (26) 
7. if f(x,A7)≥4, then x∈ClU

≥ , (21) 
8. if f(x,A1)≥8.7 and f(x,A9)≥4, then x∈ClU

≥ , (27) 
9. if f(x,A2)≥3.5 and f(x,A7)≥4, then x∈Cl A

≥ , (20) 
As the minimal set of rules is complete and composed of D≥-decision 

rules and D≤-decision rules only, application of these rules to the 39 firms will 
result in their exact re-classification to classes of risk. 

Minimal sets of decision rules represent the most concise and non-
redundant knowledge representations. The above minimal set of 9 decision rules 
uses 8 criteria and 18 elementary conditions, i.e. 3.85% of descriptors from the 
data matrix. 

The well-known machine discovery methods cannot deal with multiple 
criteria classification because they do not consider preference orders in the do-
mains of attributes and among the classes. There are multiple criteria decision 
analysis methods for such classification. However, they are not discovering clas-
sification patterns from data. They simply apply a preference model, like the 
utility function in scoring methods, to a set of objects to be classified. In this 
sense, they are not knowledge discovery methods at all. 

Comparing the DRSA to the standard rough set approach, we can notice 
the following differences between the two approaches. The standard rough set 
approach extracts knowledge about a partition of U into classes which are not 
preference-ordered. The granules used for knowledge representation are sets of 
objects which are indiscernible by a set of condition attributes.  

In the case of the DRSA and multiple criteria classification, the condition 
attributes are criteria and the classes are preference-ordered. The extracted 
knowledge concerns a collection of upward and downward unions of classes and 
the granules used for knowledge representation are sets of objects defined using 
the dominance relation. This is the main difference between the standard rough 
set approach and the DRSA. 
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There are three notable advantages of the DRSA over the standard rough 
set approach. The first one is the ability to handle criteria, preference-ordered 
classes and inconsistencies in the set of decision examples that the standard 
rough set approach is simply not able to discover. Consequently, the rough ap-
proximations separate the certain information from the doubtful, which is taken 
into account in rule induction. The second advantage is the ability to analyze  
a data matrix without any preprocessing of data. The third advantage lies in the 
richer syntax of decision rules that are induced from rough approximations. The 
elementary conditions of decision rules resulting from DRSA use relations from 
{≤,=,≥}, while those resulting from the standard rough set approach only use =. 
The DRSA syntax is more understandable to practitioners. The minimal sets of 
DRSA decision rules are smaller than the minimal sets which result from the 
standard rough set approach. 
 
 
3. THE DOMINANCE-BASED ROUGH SET APPROACH 

FOR MULTIPLE CRITERIA CHOICE AND RANKING 
 

One of the very first extensions of the DRSA concerned preference-
ordered data representing pairwise comparisons (i.e. binary relations) between 
objects on both, condition and decision attributes [7, 8, 11]. Note that while clas-
sification is based on the absolute evaluation of objects, choice and ranking refer 
to pairwise comparisons of objects. In this case, the patterns (i.e. decision rules) 
to be discovered from the data characterize a comprehensive binary relation on 
the set of objects. If this relation is a preference relation and if, from among the 
condition attributes, there are some criteria which are semantically correlated 
with the comprehensive preference relation, then the data set (serving as the 
learning sample) can be considered to be preferential information of a decision 
maker in a multiple criteria choice or ranking problem. In consequence, the 
comprehensive preference relation characterized by the decision rules discov-
ered from this data set can be considered as a preference model for the decision 
maker. It may be used to explain the decision policy of the decision maker and to 
recommend a good choice or preference ranking with respect to new objects. 

Let us consider a finite set A of objects evaluated by a finite set of criteria 
C. The best choice (or the preference ranking) in set A is semantically correlated 
with the criteria from set C. The preferential information concerning the multiple 
criteria choice or ranking problem is a data set in the form of a pairwise compar-
ison table, which includes pairs of some reference objects from a subset B⊆A×A. 
This is described by preference relations on particular criteria from C and a 
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comprehensive preference relation. One such example is a weak preference rela-
tion called the outranking relation. By using the DRSA for the analysis of the 
pairwise comparison table, we can obtain a rough approximation of the outrank-
ing relation by a dominance relation. The decision rules induced from the rough 
approximation are then applied to the complete set A of the objects associated 
with the choice or ranking. As a result, one obtains a four-valued outranking 
relation on this set. In order to obtain a recommendation, it is advisable to use an 
exploitation procedure based on the net flow score of the objects. We present this 
methodology in more detail below. 
 

3.1. The pairwise comparison table as preferential  
information and as a learning sample 

 
A set of reference objects represent a decision problem and a decision 

maker can express the preferences by pairwise comparisons. In the following, 
xSy denotes the presence, while xScy denotes the absence of the outranking rela-
tion for a pair of objects (x,y)∈ A×A. 

For each pair of reference objects (x,y)∈B⊆A×A, the decision maker can 
select one of the three following possibilities: 
1) object x is as good as y, i.e. xSy, 
2) object x is worse then y, i.e. xScy, 
3) the two objects are incomparable at the present stage. 

An m×(n+1) pairwise comparison table, denoted by SPCT, is then created 
on the basis of this information. The first n columns correspond to the criteria 
from set C. The last, i.e. the (n+1)-th, column represents the comprehensive bi-
nary preference relation S or Sc. The m rows are pairs from B. For each pair in 
SPCT, a difference between criterion values is put in the corresponding column. If 
the decision maker judges that two objects are incomparable, then the corre-
sponding pair does not appear in SPCT.  

We will define SPCT more formally. For any criterion gi∈C, let Ti be a fi-
nite set of binary relations defined on A on the basis of the evaluations of objects 
from A with respect to the considered criterion gi, such that for every (x,y)∈A×A 
exactly one binary relation t∈Ti is verified. More precisely, given the domain Vi 
of gi∈C, if ,,

i
,
i vv , ∈ Vi are the respective evaluations of x,y∈A by means of gi and 

(x,y)∈t, with t∈Ti, then for each w,z∈A having the same evaluations ,,
i

,
i vv ,  by 

means of gi, (w,z)∈t. Furthermore, let Td be a set of binary relations defined on 
set A (comprehensive pairwise comparisons) such that at most one binary rela-
tion t∈Td is verified for every (x,y)∈A×A. 



Kazimierz Zaraś, Hamdjatou Kane, Maciej Nowak 

 

30 

The pairwise comparison table is defined as data table SPCT = 〈B,C∪{d}, 
TC∪Td,f〉, where B⊆A×A is a non-empty set of exemplary pairwise comparisons 
of reference objects, TC = U

Cg
i

i

T
∈

, d is a decision corresponding to the comprehen-

sive pairwise comparison (comprehensive preference relation), and 
f:B×(C∪{d})→ TC∪Td is a total function such that f[(x,y),q]∈Ti for every 
(x,y)∈A×A and for each gi∈C, and f[(x,y),q]∈Td for every (x,y)∈B. It follows that 
for any pair of reference objects (x,y)∈B there is verified one and only one bina-
ry relation t∈Td. Thus, Td induces a partition of B. In fact, the data table SPCT can 
be seen as decision table, since the set of considered criteria C and the decision d 
are distinguished. 

We assume that the exemplary pairwise comparisons made by the decision 
maker can be represented in terms of graded preference relations (for example “very 
large preference”, “large preference”, “strict preference”, “strong preference” and 
“very strong preference”), denoted by h

qP : For each q∈C and for every (x,y)∈A×A, 

Ti = { h
iP , h∈Hi}, 

where Hi is a particular subset of the relative integers and  
− x h

iP y, h>0, means that object x is preferred to object y by degree h with re-
spect to criterion gi, 

− x h
iP y, h<0, means that object x is not preferred to object y by degree h with 

respect to criterion gi, 
− x 0

iP y means that object x is similar (asymmetrically indifferent) to object y 
with respect to criterion gi. 
Within the preference context, the similarity relation 0

iP , even if not symmetric, 
resembles the indifference relation. Thus, in this case, we call this similarity relation 
"asymmetric indifference". Of course, for each gi∈C and for every (x,y)∈A×A,  

[x h
iP y, h>0] ⇒ [y k

iP x, k≤0], [x h
iP y, h<0] ⇒ [y k

iP x, k≥0]. 
The set of binary relations Td may be defined in a similar way, but x h

dP y 
means that object x is comprehensively preferred to object y by degree h. We are 
considering a pairwise comparison table where the set Td is composed of two 
binary relations defined on A: 
− x outranks y (denoted by xSy or (x,y)∈S), where (x,y)∈B, 
− x does not outrank y (denoted by xScy or (x,y)∈Sc), where (x,y)∈B, and 

S∪Sc=B. 
Observe that the binary relation S is reflexive, but not necessarily transi-

tive or complete. 
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3.2. Rough approximation of the outranking and  
non-outranking relations specified in the pairwise  
comparison table 

 
In the following we will distinguish between two types of evaluation 

scales of criteria: cardinal and ordinal. Let CN be the set of criteria expressing 
preferences on a cardinal scale, and let CO, be the set of criteria expressing pref-
erences on an ordinal scale, such that CN∪CO = C and CN∩CO = ∅. Moreover, 
for each P⊆C, we denote by PO the subset of P composed of criteria expressing 
preferences on an ordinal scale, i.e. PO=P∩CO, and by PN we denote the subset 
of P composed of criteria expressing preferences on a cardinal scale, i.e. PN = 
P∩CN. Of course, for each P⊆C, we have P = PN∪PO and PN∩PO = ∅. 

The meaning of the two scales is such that in the case of the cardinal scale 
we can specify the intensity of preference for a given difference of evaluations, 
while in the case of the ordinal scale, this is not possible and we can only estab-
lish an order of evaluations. 
 
3.2.1. Multigraded dominance 

 
Let P = PN and PO = ∅. Given P⊆C (P ≠ ∅), (x,y),(w,z)∈A×A, the pair of 

objects (x,y) is said to dominate (w,z) with respect to criteria from P (denoted by 
(x,y)DP(w,z)), if x is preferred to y at least as strongly as w is preferred to z with 
respect to each gi∈P. More precisely, “at least as strongly as” means “by at least 
the same degree”, i.e. hi≥ki, where hi,ki∈Hi, x hi

iP y and w ki
iP z, for each gi∈P.  

Let D{i} be the dominance relation confined to the single criterion gi∈P. 
The binary relation D{i} is reflexive ((x,y)D{i}(x,y), for every (x,y)∈A×A), transi-
tive ((x,y)D{i}(w,z) and (w,z)D{i}(u,v) imply (x,y)D{i}(u,v), for every 
(x,y),(w,z),(u,v)∈A×A), and complete ((x,y)D{i}(w,z) and/or (w,z)D{i}(x,y), for all 
(x,y),(w,z)∈A×A). Therefore, D{i} is a complete preorder on A×A. Since the inter-
section of complete preorders is a partial preorder and DP = { }I

Pg
i

i

D
∈

, P⊆C, then 

the dominance relation DP is a partial preorder on A×A. 
Let R⊆P⊆C and (x,y),(u,v)∈A×A; then the following implication holds:  

(x,y)DP(u,v) ⇒ (x,y)DR(u,v) 
Given P⊆C and (x,y)∈A×A, we define the following: 

− A set of pairs of objects dominating (x,y), called the P-dominating set, denot-
ed by ( )y,xDP

+  and defined to be {(w,z)∈A×A: (w,z)DP(x,y)}, 
− A set of pairs of objects dominated by (x,y), called the P-dominated set, de-

noted by ( )y,xDP
−  and defined as {(w,z)∈A×A: (x,y)DP(w,z)}. 
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The P-dominating sets and the P-dominated sets defined on B for all pairs 
of reference objects from B are “granules of knowledge” that can be used to 
express P-lower and P-upper approximations of the comprehensive outranking 
relations S and Sc, respectively: 

( )SP  = {(x,y)∈B: ( )y,xDP
+ ⊆S} 

( )SP  = ( )
( )
U

Sy,x
P y,xD

∈

+  

( )cSP  = {(x,y)∈B: ( )y,xDP
− ⊆Sc} 

( )cSP  = ( )
( )
U

cSy,x
P y,xD

∈

−  

It has been proved in [8] that  

( )SP ⊆S⊆ ( )SP , ( )cSP ⊆Sc⊆ ( )cSP  

Furthermore, the following complementarity properties hold: 

( )SP  = B– ( )cSP , ( )SP  = B– ( )cSP  

( )cSP  = B– ( )SP , ( )cSP  = B– ( )SP  

The P-boundaries (P-doubtful regions) of S and Sc are defined as  

BnP(S) = ( )SP  – ( )SP , BnP(Sc) = ( )cSP  – ( )cSP  

From the above it follows that BnP(S) = BnP(Sc) 

The concepts of the quality of approximation, reducts and core can be ex-
tended also to the approximation of the outranking relation by multigraded dom-
inance relations.  

In particular, the coefficient  

( ) ( )
B

SPSP c

P

∪
=γ  

defines the quality of approximation of S and Sc by P⊆C. It expresses the ratio of 
all pairs of reference objects (x,y)∈B correctly assigned to S and Sc by the set P 
of criteria to all the pairs of objects contained in B. Each minimal subset P⊆C, 
such that γ P = γ C , is called a reduct of C (denoted by 

PCT
REDS ). Note that SPCT 

can have more than one reduct. The intersection of all B-reducts is called the 
core (denoted by 

PCT
CORES ). 
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It is also possible to use the Variable Consistency Model on SPCT [41] but 
being aware that some of the pairs in the positive or negative dominance sets 
belong to the opposite relation but at least l×100% of pairs belong to the correct 
one. Then the definition of the lower approximations of S and Sc boils down to: 

( ) ( )
( )
( )

( ) ( )
( )

( ) ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

≥
∩

∈=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

≥
∩

∈=

−

−

+

+

l
y,xD

Sy,xD
:By,xSP

l
y,xD

Sy,xD
:By,xSP

P

c
Pc

P

P

 

 
3.2.2. Dominance without degrees of preference 

 
The degree of graded preference considered above is defined on a cardinal 

scale of the strength of preference. However, in many real world problems, the 
existence of such a quantitative scale is rather questionable. This is the case with 
ordinal scales of criteria. In this case, the dominance relation is defined directly 
on evaluations gi(x) for all objects x∈A. Let us explain this latter case in more 
detail. 

Let P = PO and PN = ∅, then, given (x,y),(w,z)∈A×A, the pair (x,y) is said 
to dominate the pair (w,z) with respect to criteria from P (denoted by 
(x,y)DP(w,z)), if, for each gi∈P, gi(x)≥gi(w) and gi(z)≥gi(y).  

Let D{i} be the dominance relation confined to the single criterion gi∈PO. The 
binary relation D{i} is reflexive, transitive, but non-complete (it is possible that not 
(x,y)D{i}(w,z) and not (w,z)D{i}(x,y) for some (x,y),(w,z)∈A×A). Therefore, D{i} is  
a partial preorder. Since the intersection of partial preorders is also a partial preorder 
and DP = { }I

Pg
i

i

D
∈

, P = PO, then the dominance relation DP is a partial preorder.  

If some criteria from P⊆C express preferences on a quantitative or a nu-
merical non-quantitative scale and others on an ordinal scale, i.e. if PN ≠ ∅ and 
PO ≠ ∅, then, given (x,y),(w,z)∈A×A, the pair (x,y) is said to dominate the pair 
(w,z) with respect to criteria from P, if (x,y) dominates (w,z) with respect to both 
PN and PO. Since the dominance relation with respect to PN is a partial preorder 
on A×A (because it is a multigraded dominance) and the dominance with respect 
to PO is also a partial preorder on A×A (as explained above), then the dominance 
DP, being the intersection of these two dominance relations, is a partial preorder. 
In consequence, all the concepts introduced in the previous section can be re-
stored using this specific definition of dominance. 
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3.3. Induction of decision rules from rough approximations 
of outranking and non-outranking relations  

 
Using the rough approximations of S and Sc defined in 3.2.1 and 3.2.2, it is 

possible to induce a generalized description of the preferential information contained 
in a given SPCT in terms of suitable decision rules. The syntax of these rules is based 
on the concept of upward cumulated preferences (denoted by h

iP≥ ) and downward 
cumulated preferences (denoted by h

iP≤ ), having the following interpretation: 
− x h

iP≥ y means “x is preferred to y with respect to gi by at least degree h”,  
− x h

iP≤ y means “x is preferred to y with respect to gi by at most degree h”. 
Exact definition of the cumulated preferences, for each (x,y)∈A×A, gi∈C 

and h∈Hi, can be represented as follows: 
− x h

iP≥ y if x k
iP y, where k∈Hi and k≥h, 

− x h
iP≤ y if x k

iP y, where k∈Hi and k≤h. 
Let also Gi = {gi(x), x∈A}, gi∈CO. The decision rules have then the fol-

lowing syntax: 
1. Certain D≥-decision rules:  

if x ( )1
1

ih
iP≥ y and... x ( )ieh

ieP≥ y and gie+1(x)≥rie+1 and gie+1(y)≤sie+1 and... gip(x)≥rip and 
gip(y)≤sip, then xSy, 

where P = {gi1,...,gip}⊆C, PN = {gi1,...,gie}, PO = {gie+1,...,gip}, 
(h(i1),...,h(ie))∈Hi1×...×Hie and (rie+1,...,rip),(sie+1,...,sip)∈Gie+1×...×Gip. These rules 
are supported by pairs of objects from the P-lower approximation of S only. 

2. Certain D≤-decision rules:  

if x ( )1
1

ih
iP≤ y and... x ( )ieh

ieP≤ y and gie+1(x)≤rie+1 and gie+1(y)≥sie+1 and... gip(x)≤rip and 
gip(y)≥sip, then xScy, 

where P = {gi1,...,gip}⊆C, PN = {gi1,...,gie}, PO = {gie+1,...,gip}, 
(h(i1),...,h(ie))∈Hi1×...×Hie and (rie+1,...,rip),(sie+1,...,sip)∈Gie+1×...×Gip. These rules 
are supported by pairs of objects from the P-lower approximation of Sc only. 

3. Approximate D≥≤-decision rules:  

if x ( )1
1

ih
iP≥ y and... x ( )ieh

ieP≥ y and x ( )1
1

+≤
+

ieh
ieP y... x ( )ifh

ifP≤ y and gif+1(x)≥rif+1 and 

gif+1(y)≤sif+1 and... gig(x)≥rig and gig(y)≤sig and gig+1(x)≤rig+1 and gig+1(y)≥sig+1 
and... gip(x)≤rip and gip(y)≥sip, then xSy or xScy, 

where O’={gi1,...,gie}⊆C, O” = {gie+1,...,gif}}⊆C, PN = O’∪O”, O’ and O” are 
not necessarily disjoint, PO = {gif+1,...,gip}, (h(i1),...,h(if))∈Hi1×...×Hif, 
(rif+1,...,rip),(sif+1,...,sip)∈Gif+1×...×Gip. These rules are supported by pairs of ob-
jects from the P-boundary of S and Sc only. 
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3.4. Use of decision rules for decision support 
 

The decision rules induced from a given SPCT describe the comprehensive 
preference relations S and Sc either exactly (D≥- and D≤-decision rules) or ap-
proximately (D≥≤-decision rules). A set of these rules covering all pairs of SPCT 
represents a preference model from the decision maker who gave the pairwise 
comparison of reference objects. The application of these decision rules on  
a new subset M⊆A of objects induces a specific preference structure on M. 

In fact, any pair of objects (u,v)∈M×M can match the decision rules in one 
of four ways: 
− at least one D≥-decision rule and neither D≤- nor D≥≤-decision rules, 
− at least one D≤ -decision rule and neither D≥- nor D≥≤-decision rules, 
− at least one D≥-decision rule and at least one D≤-decision rule, or at least one 

D≥≤-decision rule, or at least one D≥≤-decision rule and at least one D≥- 
and/or at least one D≤-decision rule, 

− no decision rule. 
These four ways correspond to the following four situations of outranking, 

respectively: 
− uSv and not uScv, i.e. true outranking (denoted by uSTv) 
− uScv and not uSv, i.e. false outranking (denoted by uSFv) 
− uSv and uScv, i.e. contradictory outranking (denoted by uSKv) 
− not uSv and not uScv, i.e. unknown outranking (denoted by uSUv) 

The four above situations, which together constitute the so-called four-
valued outranking [24], have been introduced to underline the presence and ab-
sence of positive and negative reasons for the outranking. Moreover, they make 
it possible to distinguish contradictory situations from unknown ones.  

A final recommendation (choice or ranking) can be obtained upon a suita-
ble exploitation of this structure, i.e. of the presence and the absence of outrank-
ing S and Sc on M. A possible exploitation procedure consists of calculating a 
specific score, called the Net Flow Score, for each object x∈M: 
Snf(x) = S++(x) – S+–(x) + S–+(x) – S––(x), where 
S++(x) = card({y∈M: there is at least one decision rule which affirms xSy}) 
S+–(x) = card({y∈M: there is at least one decision rule which affirms ySx}) 
S–+(x) = card({y∈M: there is at least one decision rule which affirms yScx}) 
S––(x) = card({y∈M: there is at least one decision rule which affirms xScy}) 

The recommendation in ranking problems consists of the total preorder 
determined by Snf(x) on M. In choice problems, it consists of the object(s) x*∈M 
such that Snf(x*) =

Mx
max
∈

{Snf(x)}.  

The above procedure has been characterized with reference to a number of 
desirable properties in [24]. 
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3.5. An illustrative example 
 

Let us suppose that a company managing a chain of warehouses wants to 
buy some new warehouses. To choose the best proposals or to rank them all, the 
managers of the company decide to analyze first the characteristics of eight 
warehouses already owned by the company (reference objects). This analysis 
should give some indications for the choice and ranking of the new proposals. 
Eight warehouses belonging to the company have been evaluated by the follow-
ing three criteria: capacity of the sales staff (A1), perceived quality of goods (A2) 
and high traffic location (A3). The domains (scales) of these attributes are pres-
ently composed of three preference-ordered echelons: V1 = V2 = V3 = {sufficient, 
medium, good}. The decision attribute (d) indicates the profitability of ware-
houses, expressed by the Return On Equity (ROE) ratio (in %). Table 2 presents 
a decision table which represents this situation. 

Table 2  

Decision table with reference objects 

Warehouse A1 A2 A3 d (ROE%) 

1 good medium good 10.35 

2 good sufficient good 4.58 

3 medium medium good 5.15 

4 sufficient medium medium -5 

5 sufficient medium medium 2.42 

6 sufficient sufficient good 2.98 

7 good medium good 15 

8 good sufficient good -1.55 

With respect to the set of criteria C = CN = {A1,A2,A3}, the following 
multigraded preference relations h

iP , i = 1,2,3, are defined: 
− x 0

iP y (and y 0
iP x), meaning that x is indifferent to y with respect to Ai, if 

f(x,Ai) = f(y,Ai), 
− x 1

iP y (and y 1−
iP x), meaning that x is preferred to y with respect to Ai, if f(x,Ai) = 

good and f(y,Ai) = medium, or if f(x,Ai) = medium and f(y,Ai) = sufficient, 
− x 2

iP y (and y 2−
iP x), meaning that x is strongly preferred to y with respect to 

Ai, if f(x,Ai) = good and f(y,Ai) = sufficient. 
Using the decision attribute, the comprehensive outranking relation was 

built as follows: warehouse x is at least as good as warehouse y with respect to 
profitability (xSy) if  

ROE(x) ≥ ROE(y) – 2%. 
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Otherwise, i.e. if ROE(x) < ROE(y) – 2%, warehouse x is not at least as 
good as warehouse y with respect to profitability (xScy).  

The pairwise comparisons of the reference objects result in SPCT. The 
rough set analysis of the SPCT leads to the conclusion that the set of decision 
examples on the reference objects is inconsistent. The quality of approximation 
of S and Sc by all criteria from set C is equal to 0.44. Moreover, 

PCT
REDS = 

PCT
CORES = {A1,A2,A3}. This means that no criterion is superfluous. 

The C-lower approximations and the C-upper approximations of S and Sc, 
obtained by means of multigraded dominance relations, are: 

( )SC  = {(1,2),(1,4),(1,5),(1,6),(1,8),(3,2),(3,4),(3,5),(3,6),(3,8),(7,2),(7,4),(7,5),(7,6),(7,8)} 

( )cSC  = {(2,1),(2,7),(4,1),(4,3),(4,7),(5,1),(5,3),(5,7),(6,1),(6,3),(6,7),(8,1),(8,7)} 
All the remaining 36 pairs of reference objects belong to the C-boundaries 

of S and Sc, i.e. BnC(S) = BnC(Sc). 
The following minimal D≥-decision rules and D≤-decision rules can be 

induced from lower approximations of S and Sc, respectively (the figures within 
parentheses represent the pairs of objects supporting the corresponding rules): 
if x 1

1
≥P y and x 1

2
≥P y, then xSy;  ((1,6),(3,6),(7,6)) 

if x 1
2
≥P y and x 0

3
≥P y, then xSy;  ((1,2),(1,6),(1,8),(3,2),(3,6),(3,8),(7,2),(7,6),(7,8)) 

if x 0
2
≥P y and x 1

3
≥P y, then xSy;  ((1,4),(1,5),(3,4),(3,5),(7,4),(7,5)) 

if x 1
1
−≤P y and x 1

2
−≤P y, then xScy;  ((6,1),(6,3),(6,7)) 

if x 0
2
≤P y and x 1

3
−≤P y, then xScy;  ((4,1),(4,3),(4,7),(5,1),(5,3),(5,7)) 

if x 0
1
≤P y and x 1

2
−≤P y and x 0

3
≤P y, then xScy;  ((2,1),(2,7),(6,1),(6,3),(6,7),(8,1),(8,7)) 

Moreover, it is possible to induce five minimal D≥≤-decision rules from 
the boundary of approximation of S and Sc:  
if x 0

2
≤P y and x 0

2
≥P y and x 0

3
≤P y and x 0

3
≥P y, then xSy or xScy; 

((1,1),(1,3),(1,7),(2,2),(2,6),(2,8),(3,1),(3,3),(3,7),(4,4),(4,5),(5,4),(5,5),(6,2),(6,6),(6,8),(7,1),(7,3), 
(7,7),(8,2),(8,6),(8,8)) 

if x 1
2
−≤P y and x 1

3
≥P y, then xSy or xScy;  ((2,4),(2,5),(6,4),(6,5),(8,4),(8,5)) 

if x 1
2
≥P y and x 1

3
−≤P y, then xSy or xScy;  ((4,2),(4,6),(4,8),(5,2),(5,6),(5,8)) 

if x 1
1
≥P y and x 0

2
≤P y and x 0

3
≤P y, then xSy or xScy;  ((1,3),(2,3),(2,6),(7,3),(8,3),(8,6)), 

if x 1
1
≥P y and x 1

2
−≤P y, then xSy or xScy;  ((2,3),(2,4),(2,5),(8,3),(8,4),(8,5)) 

Using all the above decision rules and the Net Flow Score exploitation 
procedure on ten other warehouses proposed for purchase, the managers can 
obtain the result presented in Table 3. The DRSA gives a clear recommendation:  
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− For the choice problem it suggests the selection of warehouse 2' and 6', hav-
ing maximum score (11) 

− For the ranking problem it suggests the ranking presented in the last column 
of Table 3, as follows: 

(2',6') → (8') → (9') → (1') → (4') → (5') → (3') → (7',10') 
 

Table 3  
 

Ranking of warehouses for sale by decision rules and the Net Flow Score procedure 
 

Warehouse  
for sale A1 A2 A3 Net Flow Score Ranking 

1' good sufficient medium 1 5 

2' sufficient good good 11 1 

3' sufficient medium sufficient -8 8 

4' sufficient good sufficient 0 6 

5' sufficient sufficient medium -4 7 

6' sufficient good good 11 1 

7' medium sufficient sufficient -11 9 

8' medium medium medium 7 3 

9' medium good sufficient 4 4 

10' medium sufficient sufficient -11 9 

 
Summary 
 

We briefly presented the contribution of the DRSA to multiple criteria 
choice and ranking problems. Let us point out the main features of the described 
methodology: 
− The decision maker is asked for the preference information necessary to deal 

with a multiple criteria decision problem in terms of exemplary decisions. 
− The rough set analysis of preferential information supplies some useful ele-

ments of knowledge about the decision situation. These are: the relevance of 
particular attributes and/or criteria, information about their interaction, mini-
mal subsets of attributes or criteria (reducts) conveying important knowledge 
contained in the exemplary decisions and the set of the non-reducible attrib-
utes or criteria (core). 

− The preference model induced from the preferential information is expressed 
in a natural and comprehensible language of “if..., then...” decision rules. The 
decision rules concern pairs of objects and from them we can determine ei-
ther the presence or the absence of a comprehensive preference relation. The 
conditions for the presence are expressed in “at least” terms, and for the ab-
sence in “at most” terms, on particular criteria. 
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− The decision rules do not convert ordinal information into numeric but keep 
the ordinal character of input data due to the syntax proposed. 

− Heterogeneous information (qualitative and quantitative, ordered and non-
ordered) and scales of preference (ordinal, cardinal) can be processed within 
the DRSA, while classical methods consider only quantitative ordered evalu-
ations (with rare exceptions). 

− No prior discretization of the quantitative domains of criteria is necessary. 
Rough approximations of a comprehensive preference relation can be de-

fined using other types of dominance than the Pareto dominance used in this 
section. In [43], the Lorenz dominance has been used for rough approximations, 
permitting induction of more robust decision rules, i.e. certain decision rules 
supported by consistent pairs of objects characterized by equitable distributions 
of intensities of preference on considered criteria 
 
 
4. DRSA FOR DECISION UNDER RISK 

 
In [13], we opened a new avenue for applications of the rough set concept. 

This avenue leads to the classical problem of decision under risk. To adapt the 
DRSA to this problem, we substituted the dominance relation by stochastic dom-
inance relation defined on a set of objects meaning acts. We considered the case 
of traditional additive probability distribution over a set of states of the world, 
however, the model is rich enough to handle non-additive probability distribu-
tions and even qualitative ordinal distributions. The adapted DRSA gives a rep-
resentation of DM’s preferences under risk in terms of “if…, then…” decision 
rules induced from rough approximation of preference ordered classification of 
acts described in terms of outcomes in uncertain states of the world. The prefer-
ence ordered classification constitutes, in this case, preferential information ac-
quired from the DM. 
 

4.1. DRSA based on stochastic dominance 
 

To apply DRSA to decision under risk, we consider the following basic 
elements: 
− a set S = {s1, s2, …, ss} of states of the world, or simply states, which are 

supposed to be mutually exclusive and collectively exhaustive,  
− an a priori probability distribution P over the states of the world: more pre-

cisely, the probabilities of states s1, s2, …, ss are p1, p2, …, ps, respectively 
(p1+ p2 + …+ ps = 1, pi≥0, i = 1,…s),  
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− a set A = {A1, A2, …, Am} of acts,  
− a set X = {x1, x2, …, xr} of consequences or outcomes that, for the sake of 

simplicity, are supposed to be expressed in monetary terms, thus X⊆R,  
− a function g: A×S→X assigning to each act-state pair (Ai, sj)∈A×S  

a consequence xh∈X,  
− a set of classes Cl = {Cl1, Cl2, …, Cln}, such that Cl1∪Cl2∪ …∪Cln = A, 

Clp∩Clq = ∅ for each p,q∈{1,2…,n} with p ≠ q; the classes of Cl are preference 
ordered according to an increasing order of their indices, in the sense that for 
each Ai,Aj∈A, if Ai∈Clp and Aj∈Clq with p>q, then Ai is preferred to Aj, 

− a function e: A→ Cl assigning each act Ai∈A to a class Clt∈Cl. 
In this context, two different types of dominance relations can be considered:  

1) (classical) dominance: given Ai,Aj∈A, Ai dominates Aj iff for each possible 
state of the world act Ai gives an outcome at least as good as act Aj; more 
formally, g(Ai,sk)≥g(Aj,sk), for each sk∈S, 

2) stochastic dominance: given Ai,Aj∈A, Ai stochastically dominates Aj iff for 
each outcome x∈X, act Ai gives an outcome at least as good as x with a prob-
ability at least as large as act Aj. 

Case 1) corresponds to a model in which the utility is state dependent 
while case 2) corresponds to a model of decision under risk proposed by. We 
consider the second case. 

On the basis of an a priori probability distribution P, we can assign to 
each subset of states of the world W⊆S (W ≠ ∅) the probability P(W) that one of 
the states in W is verified, i.e. P(W) = ∑

∈Ws:i
i

i

p  and then to build up the set Π of all 

the possible values P(W), i.e.  
Π = {π∈[0,1]: π = P(W), W⊆S} 

We define the following function z: A×S→Π, assigning to each act-state 
pair (Ai,sj)∈A×S a probability π∈Π, as follows: 

z(Ai,sj) =
( ) ( )
∑
≥ s,Ags,Ag:r

r
jiri

p  

Therefore, z(Ai,sj) represents the probability of obtaining by act Ai an out-
come whose value is at least g(Ai,sj). 

On the basis of function z(Ai, sj), we can define the function ρ: A×Π→X as 
follows:  

ρ(Ai,π) = ( ) π,sAj:z ji ≥
min g(Ai,sj) 

Thus, ρ(Ai,π) = x means that by act Ai one can gain at least x with a prob-
ability greater than or equal to π. 
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Using function z(Ai, sj), we can also define function ρ': A×Π→X as follows:  
ρ'(Ai,π) =

( ) π,sAj:z ji ≤
max g(Ai,sj) 

ρ'(Ai,π) = x means that by act Ai one can gain at most x with a probability 
smaller than or equal to π. 

If the elements of Π, 0 = π(1), π(2) , …, π(w) = 1 (w = card(Π)), are reordered in 
such a way that π(1)≤π(2)≤ … ≤π(w), then we have ρ(Ai,π(j))=ρ'(Ai,1–π(j–1)).  

Therefore, ρ(Ai,π(j))≤x is equivalent to ρ'(Ai,1–π(j–1))≥x, Ai∈A, π(j)∈Π, x∈X.  
Given Ai,Aj∈A, Ai stochastically dominates Aj if and only if 

ρ(Ai,π)≥ρ(Aj,π) for each π∈Π. This is equivalent to say: given Ai,Aj∈A, Ai sto-
chastically dominates Aj if and only if ρ'(Ai,π)≤ρ'(Aj,π) for each π∈Π. 

We can apply DRSA in this context considering the following correspond-
ence: 
− the universe U is the set of acts A,  
− the set of condition attributes (criteria) C is the set Π, 
− the domain Vπ of each criterion π∈Π is the set X, 
− the single decision attribute d specifies classification of acts from A into clas-

ses from Cl,  
− the information function f is a function f such that for all Ai∈A and π∈Π, 

f(Ai,π) = ρ(Ai,π) and f(Ai,d) = e(Ai), 
− the dominance relation on U is the stochastic dominance relation on A.  

The aim of DRSA to decision under risk is to explain the preferences of 
the DM, represented by his/her assignments of the acts from A to the classes of 
Cl, in terms of decision rules involving stochastic dominance on partial profiles 
corresponding to outcomes x for some probabilities π.  
 

4.2. An illustrative example 
 

The following example illustrates the approach. Let us consider  
− set S = {s1, s2, s3} of states of the world,  
− a priori probability distribution P over the states of the world defined as fol-

lows: p1 = 0.25, p2 = 0.35, p3 = 0.40,  
− set A = {A1, A2, A3, A4, A5, A6} of acts, 
− set X = {0, 10, 15, 20, 30} of consequences,  
− set of classes Cl = {Cl1, Cl2, Cl3}, where Cl1 is the set of bad acts, Cl2 is the 

set of medium acts, Cl3 is the set of good acts, 
− function g:A×S→X assigning to each act-state pair (Ai,sj)∈A×S a consequence 

xh∈X, and a function e: A→ Cl assigning each act Ai∈A to a class Clt∈Cl, as 
presented in Table 4. 
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Table 4 
 

 Acts, consequences and assignment to classes from Cl 
 

 pj A1 A2 A3 A4 A5 A6 
s1 0.2

5 
30 0 15 0 20 10 

s2 0.3
5 

10 20 0 15 10 20 

s3 0.4
0 

10 20 20 20 20 20 

d  goo
d 

medium medium ba
d 

medium goo
d 

 
DRSA is applied on Table 5 including the values of function ρ(Ai,π). Let 

us explain what mean the entries in Table 5. If we consider the column of act, 
say A3, we see that by act A3, 
− the value 20 in the row corresponding to 0.25 means that the outcome is at 

least 20 with a probability of at least 0.25, 
− the value 15 in the row corresponding to 0.65 means that the outcome is at 

least 15 with a probability of at least 0.65, 
− the value 0 in the row corresponding to 0.75 means that the outcome is at 

least 0 with a probability of at least 0.75. 
Table 5  

 

Acts, values of function ρ(Ai,π) and assignment to classes from Cl 
 

 A1 A2 A3 A4 A5 A6 
0.25 30 20 20 20 20 20 
0.35 10 20 20 20 20 20 
0.40 10 20 20 20 20 20 
0.60 10 20 15 15 20 20 
0.65 10 20 15 15 20 20 
0.75 10 20 0 15 10 20 

1 10 0 0 0 10 10 
d good medium medium bad medium good 

 

If we consider the row corresponding to 0.65, then  
− the value 10 relative to A1, means that by act A1 the outcome is at least 10 

with a probability of at least 0.65,  
− the value 20 relative to A2, means that by act A2 the outcome is at least 20 

with a probability of at least 0.65, and so on. 
Applying DRSA, we approximate the following upward and downward 

unions of classes: 
− 

≥
2Cl = Cl2∪Cl3, i.e. the set of the acts at least medium, 

− 
≥
3Cl = Cl3, i.e. the set of the acts (at least) good, 
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− 
≤
1Cl = Cl1, i.e. the set of the acts (at most) bad, 

− 
≤
2Cl = Cl1∪Cl2, i.e. the set of the acts at most medium. 
The first result of the DRSA is a discovery that the data table (Table 5) is 

not consistent. Indeed, Table 5 shows that act A4 stochastically dominates act A3, 
however act A3 is assigned to a better class (medium) than act A4 (bad). There-
fore, act A3 cannot be assigned without doubt to the class of at least medium acts 
as well as act A4 cannot be assigned without doubt to the class of (at most) bad 
acts. In consequence, lower approximation and upper approximation of ≥

2Cl , 
≥
3Cl  and ≤

1Cl , ≤
2Cl  are equal, respectively, to  

− ( )≥2ClC  = {A1,A2,A5,A6} = ≥
2Cl –{A3},  

( )≥2ClC  = {A1,A2,A3,A4,A5,A6} = ≥
2Cl ∪{A4}, 

− ( )≥3ClC  = {A1,A6} = ≥
3Cl , ( )≥3ClC  = {A1,A6} = ≥

3Cl , 
− ( )≤1ClC  = ∅ = ≤

1Cl –{A4}, ( )≤1ClC  = {A3,A4} = ≤
1Cl ∪{A3}, 

− ( )≤2ClC  = {A2,A3,A4,A5} = ≤
2Cl , ( )≤2ClC  = {A2,A3,A4,A5} = ≤

2Cl . 
Since there are two inconsistent acts on a total of six acts (A3,A4), then the 

quality of approximation (quality of classification) is equal to 4/6. 
The second discovery is one reduct of condition attributes (criteria) ensur-

ing the same quality of classification as the whole set Π of probabilities: 
ClRED = {0.25, 0.75, 1}. This means that we can explain the preferences of the 

DM using the probabilities in ClRED  only. ClRED  is also the core because no 
probability value can be removed from ClRED  without deteriorating the quality 
of classification. 

The third discovery gives sets of decision rules describing the DM's prefer-
ences. Below, we are presenting one of minimal sets of decision rules covering all 
the acts [within brackets there is a verbal interpretation of the corresponding deci-
sion rule] (within parentheses there are acts supporting the corresponding rule):  
1)  if ρ(Ai,0.25)≥30, then Ai∈ ≥

3Cl ,  
[if the probability of gaining at least 30 is at least 0.25, then act Ai is (at 
least) good] (A1), 

2)  if ρ(Ai,0.75)≥20 and ρ(Ai,1)≥10, then Ai∈ ≥
3Cl ,  

[if the probability of gaining at least 20 is at least 0.75 and the probability of 
gaining at least 10 is (at least) 1 (i.e. for sure the gain is at least 10), then act 
Ai is (at least) good] (A6), 

3)  if ρ(Ai,1)≥10, then Ai∈ ≥
2Cl ,  

[if the probability of gaining at least 10 is (at least) 1 (i.e. for sure the gain is 
at least 10), then act Ai is at least medium] (A1, A5, A6), 
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4)  if ρ(Ai,0.75)≥20, then Ai∈ ≥
2Cl ,  

[if the probability of gaining at least 20 is at least 0.75, then act Ai is at least 
medium] (A2, A6), 

5) if ρ(Ai,0.25)≤20 (i.e. ρ'(Ai,1)≥20) and ρ(Ai,0.75)≤15 (i.e. ρ'(Ai,0.35)≥15), 
then Ai∈ ≤

2Cl , 
[if the probability of gaining at most 20 is (at least) 1 (i.e. for sure the gain is 
at most 20) and the probability of gaining at most 15 is at least 0.35, then act 
Ai is at most medium] (A3, A4, A5), 

6) if ρ(Ai,1)≤0 (i.e. ρ'(Ai,0.25)≥0), then Ai∈Cl1∪Cl2, 
[if the probability of gaining at most 0 is at least 0.25, then act Ai is at most me-
dium] (A2, A3, A4), 
7) if ρ(Ai,1)≥0 and ρ(Ai,1)≤0 (i.e. ρ(Ai,1)=0) and ρ(Ai,0.75)≤15 (i.e. 

ρ'(Ai,0.35)≥10), then Ai∈Cl1∪Cl2, 
[if the probability of gaining at least 0 is 1 (i.e. for sure the gain is at least 0) 
and the probability of gaining at most 15 is at least 0.35, then act Ai is bad or 
medium, with no possibility of assigning Ai to only one of the two classes be-
cause of ambiguous knowledge] (A3, A4). 

Minimal sets of decision rules represent the most concise and non-
redundant knowledge contained in Table 4 (and, consequently, in Table 5). The 
above minimal set of 7 decision rules uses 3 attributes (probabilities 0.25, 0.75 
and 1) and 11 elementary conditions, i.e. 26% of descriptors from the original 
data table (Table 5). For larger sets of exemplary acts, the representation in terms 
of decision rules is even more synthetic (the percentage of descriptors from the 
original data table is smaller).  

Let us observe that we considered an additive probability distribution, 
however, an extension to non-additive probability, and even to a qualitative ordi-
nal probability, is straightforward. If the elements of set Π are numerous (like in 
real applications), a subset Π'⊂Π of the most significant probability values (e.g. 
0, 0.1, 0.2, …, 0.9, 1) can be considered. 
 
 
5. COMPARISON OF DRSA WITH OTHER DECISION  

SUPORT PARADIGMS 
 

DRSA aims to give an effective answer to the central problem of any de-
cision-aiding methodology concerning multiple criteria and/or multiple attribute 
classification, that is the aggregation of the multiple criteria and attributes into  
a single preference model. In this section, we propose to compare different para-
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digms used to solve this central problem by different theories (see Table 6). In 
[17, 42], this comparison was made at the level of axiomatic foundations, which 
has no precedence in the theoretical research concerning multiple criteria classi-
fication. The axiomatic approach is interesting for at least three reasons: 
− it exhibits differences between preference models and methods, 
− it permits to interpret methods conceived for one model in terms of another 

model, 
− knowing the basic axioms, one can pass from one method to another with 

different preference models. 
 

Table 6  
 

Different paradigms of aggregation and preference representation 
 

Theory (paradigm) 
Main preoccupation 

(axiomatic basis) 

The aggregation result 

evidences 

Social Choice Theory Voting system 

or aggregation of rankings 

Final ranking 

Decision Theory Definition of preference struc-

tures 

Relation in A 

Measurement Theory Cancellation property Function, 

like in conjoint measurement 

Measure Theory, 

Fuzzy Sets 

Capacity 

or fuzzy measure 

Weights 

or interaction between criteria, 

like in Choquet integral 

or Sugeno integral 

Machine Learning, 

Logical Analysis of Data, 

Rough Sets 

Boolean or pseudo-Boolean 

function, 

decision rules 

or decision trees 

Knowledge, 

like in knowledge discovery 

or data mining 

 
Moreover, in [17, 42], we have considered aggregation of ordinal criteria 

that has been studied much less than that of cardinal criteria. Among several 
aggregation models, a particular interest has been paid recently for an integral 
proposed by Sugeno, able to deal with ordinal data; it has been considered the 
most general ordinal aggregation function of the max-min average type. It ap-
pears, however, that this function has some unpleasant limitations: the most im-
portant is the so-called commensurability, i.e. the evaluations with respect to 
each considered criterion should be defined on the same scale. Comparison of 
the Sugeno integral with the decision rule model at the axiomatic level permits 
to show other limitation of the former. 



Kazimierz Zaraś, Hamdjatou Kane, Maciej Nowak 

 

46 

Below, we present the main results concerning the comparison of axio-
matic foundations of the decision rule model and two traditional models: utility 
function and outranking relation. 
 
5.1. Axiomatic foundations of multiple criteria classification 

problems and associated preference models 
 

In this point we consider a finite or denumerable product space X 
=∏=

n
i iX

1
, where Xi is an evaluation scale of criterion i = 1,…,n. With appropri-

ate topological conditions we can also work with infinite non-denumerable 
space, but in this paper, for the sake of simplicity, we will skip this possibility.  

The following result is a representation theorem for the multiple criteria 
classification problem, stating equivalence between a very simple cancellation 
property, a general utility function, a very general outranking relation and a set 
of decision rules. Let us mention that equivalence of the considered cancellation 
property and the utility function was already noted by Goldstein (1991), within 
the conjoint measurement approach, for the special case of three decision clas-
ses.  

Theorem 1 [17]. The following four propositions are equivalent: 
1) (cancellation property) for each i = 1,…,n, for each xi,yi∈Xi and a-i,b-i∈X-i, 

and for each r,s∈{1,…,m}: 
{(xia-i)∈Clr and (yib-i)∈Cls} ⇒ {(yia-i)∈Clr

≥  or (xib-i)∈Cls
≥ } 

2) (utility function) there exist: 
− functions gi: Xi→R for each i = 1,…,n, called criteria, 
− function f: Rn→ R, non-decreasing in each argument, called utility function,  
− m-1 ordered thresholds zt, t = 2,…,m, satisfying  

z2 < z3 < …. < zm 

such that for each x∈X and each t = 2,…,m 
f[g1(x1), g2(x2),…, gn(xn)] ≥ zt ⇔ x∈Clt

≥  

3) (outranking function and relation) there exist 
− functions gi: Xi→ R, i = 1,…,n, called criteria, 
− function s: R2n→ R, non-decreasing in each odd argument and non-increasing 

in each even argument, called outranking function,  
− m-1 reference profiles pt, t = 2,…,m, satisfying  

gi(p2) ≤ gi(p3) ≤ ...≤ gi(pm), for i = 1,…,n 
such that for each x∈X and each t = 2,…,m 

s[g1(x1), g1(pt), g2(x2), g2(pt),…, gn(xn), gn(pt)] ≥ 0 ⇔ x∈Clt
≥  
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(N.B. s[g1(x1), g1(pt), g2(x2), g2(pt),…, gn(xn), gn(pt)] ≥ 0 ⇔ x S pt,  
where S is a binary outranking relation), 
4) (“at least” decision rules) there exist: 
− functions gi: Xi→ R for each i = 1,…,n, called criteria, 
− a set of “at least” decision rules whose syntax is  

if gi1(xi1)≥ri1 and gi2(xi2)≥ri2 and … and gih(xih)≥rih, then x∈Clt
≥ , 

with {i1,i2,…,ih}⊆{1,…,n}, t = 2,…,m, 
such that for each y∈Clt, t = 2,…,m, there is at least one rule implying y∈Clt

≥  
and there is no rule implying y∈Clr

≥ , with r>t.       
Let us remark that the above representation theorem for multiple criteria 

classification problem starts with a very weak axiomatic condition called cancel-
lation property. Indeed, this property does not require existence of criterion func-
tions gi, i = 1,…,n, or a dominance relation D on X in order to characterize the 
three preference models. Instead, the meaning of the above cancellation property 
is the following. Let us consider the binary large preference relation fi defined 
on Xi, i = 1,…,n, as follows: for each for each xi,yi∈Xi, for each for each a-i∈X-i 
and for each Clr∈Cl: 

xifiyi ⇔ [(yia-i)∈Clr ⇒ (yia-i)∈Clr
≥ ] 

Cancellation property ensures that the binary large preference relation fi 
on Xi is a complete preorder, that is strongly complete (for each xi,yi∈Xi, xifiyi or 
yifixi) and transitive. Consequently, there exists a function gi: Xi→R such that for 
each xi,yi∈Xi 

xifi yi ⇔ gi(xi) ≥ gi(yi) 

On the basis of relations fi , i = 1,...,n, one can also define a dominance 
relation D on X as follows: for each x,y∈X  

xDy ⇔ xifi yi for all i = 1,...,n 

This is of course equivalent to  
xDy ⇔ gi(xi) ≥ gi(yi) for all i = 1,...,n 

Cancellation property 1) of Theorem 1 permits to state the following con-
dition of coherence between dominance relation D and classification Cl, for 
each x,y∈X  

xDy ⇒ x∈Clr and y∈Cls, with r≥s 
For any subset of criteria P⊆{1,…,n} and for each pair x,y∈X one can al-

so define a dominance relation DP on X: 
xDPy ⇔ xifi yi for all i∈P 

which is equivalent to  



Kazimierz Zaraś, Hamdjatou Kane, Maciej Nowak 

 

48 

xDPy ⇔ gi(xi) ≥ gi(yi) for all i∈P 
Dominance relations DP, P⊆{1,…,n}, are used in the condition part of de-

cision rules. Being an intersection of complete preorders, binary relations DP are 
partial preorders, i.e. they are reflexive and transitive.  

Observe, moreover, that Theorem 1 regards a representation of classifica-
tion Cl in terms of “lower bounds”. Theorem 1 can be reformulated in terms of 
“upper bounds” in such a way that: 
−  condition of proposition 2) is expressed as  

f[g1(x1), g2(x2),…, gn(xn)] ≤ wt ⇔ x∈Clt
≤ , 

where wt, t = 1,…,m-1, are m-1 suitably ordered thresholds,  
−  condition of proposition 3) is expressed as  

s[g1(x1), g1(qt), g2(x2), g2(qt),…, gn(xn), gn(qt)] < 0 ⇔ x∈Clt
≤  

where qt, t = 1,…,m-1, are m-1 reference profiles qt, such that qt+1 dominates qt (i.e. 
qt+1 is at least as good as qt with respect to each criterion i = 1,…,n, and there is at 
least one criterion j∈{1,…,n} for which qt+1 is strictly preferred to qt), t = 1,…,m-2, 
−   condition of proposition 4) considers a set of decision rules whose syntax is  

if gi1(xi1)≤ri1 and gi2(xi2)≤ri2 and … and gih(xih)≤rih, then x∈Clr
≤  

with {i1,i2,…,ih}⊆{1,…,n}. These decision rules are called “at most” decision 
rules. The classification of x∈X with “at most” decision rules is done according 
to the following procedure: 
− x∈Clt if and only if there exists a rule matching x that assigns x to Clt

≤ , and 
there exists no rule matching x that assigns x to Cls

≤ , where s<t; 
− x∈Clm if and only if there exists no rule matching x. 
 

6.2. Conjoint measurement for multiple criteria classification 
problems with inconsistencies 

 
The conjoint measurement model presented in point 6.1 cannot represent 

the inconsistency with the dominance principle considered within the DRSA. In 
this point we present a more general model of conjoint measurement that permits 
representation of this inconsistency. This model is based on the concepts of dom-
inance-based rough approximation of upward and downward unions of classes 
Clt

≥  and Clt
≤ . 

The following concepts will be useful: for each x∈X, the lower class and the 
upper class of x, denoted by r∗(x) and r∗(x), respectively, are defined as follows 

r∗(x) = max{s∈{1,..,m}: x∈ ( )≥sClC } 
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r∗(x) = min{s∈{1,..,m}: x∈ ( )≤sClC } 
where ( )≥sClC  and ( )≤sClC  are the lower approximations of Cls

≥
 and ≤

sCl , re-
spectively, with respect to set of criteria C = {g1,g2,…,gn}. 

Theorem 2 [17]. For each set of binary relations fi , i = 1,…,n, being 

complete preorders, and for each classification Cl there exist 
− functions gi: Xi→R, such that xifi yi ⇔ gi(xi) ≥ gi(yi), i = 1,…,n, 
− functions f≥: Rn→ R and f≤: Rn→ R, non-decreasing in each argument, such that  
− f≥[g1(x1),g2(x2),…,gn(xn)] ≤ f≤[g1(x1),g2(x2),…,gn(xn)] 
− m-1 ordered thresholds zt, t=2,…,m,  

z2 < z3 < ... < zm 
such that for each object x∈X, functions f≥ and f≤ assign x to a lower and an up-
per class, respectively: 

f≥[g1(x1),g2(x2),…,gn(xn)] ≥ zt ⇔ x∈ ( )≥tClC  

f≤[g1(x1),g2(x2),…,gn(xn)] < zt ⇔ x∈ ( )≤
−1tClC  

where t = 2,…,m, C = {g1,g2,…,gn}        
Inconsistency with the dominance principle can also be represented in 

terms of a set of “at least” and “at most” decision rules considered together. 
More formally, a set of “at least” and “at most” decision rules does not contra-
dict the classification Cl if for each x∈Clt there exists no “at least” decision rule 
for which x∈Cls

≥ , with s>t, and there exists no “at most” decision rule for which 
x∈ ≤

sCl , with s<t. A set of decision rules is complete if for each x∈ ( )≥tClC  there 
exists a decision rule for which x∈Cls

≥ , with s≥t, and for each x∈ ( )≤tClC  there 
exists a decision rule for which x∈Cls

≤ , with s≤t. A set of decision rules repre-
sents the classification Cl if it does not contradict Cl and it is complete. 

Theorem 3 [17]. For each set of binary relations fi , i = 1,…,n, being 

complete preorders, and for each classification Cl, there exists a set of decision 
rules representing the classification Cl.       

The advantage of the DRSA with respect to competitive methodologies is 
the possibility of handling partially inconsistent data that are often encountered 
in preferential information, due to hesitation of decision makers, unstable char-
acter of their preferences, imprecise or incomplete information and the like. 
Therefore, we proposed a general model of conjoint measurement that, using the 
basic concepts of DRSA (lower and upper approximations), is able to represent 
these inconsistencies by a specific utility function. We showed that these incon-
sistencies can also be represented in a meaningful way by “if…, then...” decision 
rules induced from rough approximations.  
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As DRSA to multiple-criteria classification problems and the underlying 
decision rules exploit only the ordinal properties of the scales of criteria, they are 
appropriate for aggregation of ordinal criteria. This challenging problem of multi-
ple-criteria decision making has been solved until now by using some ‘max-min’ 
aggregation functions, with the most general one − the fuzzy integral proposed by 
Sugeno. In [17, 42], we have shown that the decision rule model following from 
DRSA has advantages over the integral of Sugeno, in particular, it can represent 
some (even consistent) preferences that the Sugeno integral cannot. 

The characterization of the decision rule preference model given in this 
section shows clearly its extraordinary capacity of criteria aggregation in multi-
ple criteria classification problems. The decision rule preference model, apart 
from its capacity of representation, fulfils the postulate of transparency and in-
terpretability of preference models in decision aiding. The characterization 
shows that the decision rule preference model is a strong alternative to function-
al and relational preference models to which it is formally equivalent. Recently, 
similar benefits of the decision rule model have been proved with respect to 
multiple criteria choice and ranking problems [16]. 
 
 
CONCLUSIONS AND PROMISING AREAS 

 
We presented a knowledge discovery paradigm for multiple attribute and 

multiple criteria decision support, based on the concept of rough sets. Rough set 
theory provides mathematical tools for dealing with granularity of information 
and possible inconsistencies in the description of objects. Considering this de-
scription as an input data about a decision problem, the knowledge discovery 
paradigm consists in searching for patterns in the data that facilitate an under-
standing of the decision maker’s preferences and that permit to recommend  
a decision concordant with these preferences. An original component of this 
paradigm is taking into account prior knowledge about preference semantics in 
patterns to be discovered.  

Knowledge discovery from preference-ordered data differs from usual 
knowledge discovery since the former involves preference orders in domains of 
attributes and in the set of decision classes. This requires that a knowledge dis-
covery method applied to preference-ordered data respects the dominance prin-
ciple. As this is not the case for the well-known methods of data mining and 
knowledge discovery, they are not able to discover all relevant knowledge con-
tained in the analyzed data sample and, even worse, they may yield unreasonable 
discoveries, because inconsistent with the dominance principle. These deficien-
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cies are repaired in DRSA based on the concept of rough approximations con-
sistent with the dominance principle. DRSA permits, moreover, to apply rough 
set approach to some new fields, like multiple criteria decision making and deci-
sion under uncertainty. Many extensions proposed for DRSA make of this ap-
proach  
a useful tool for practical applications. Let us mention below the most important 
ones: 
− DRSA with missing values of attributes and criteria [9],  
− fuzzy set extensions of DRSA [4, 10, 19, 46], 
− DRSA for hierarchical decision making [1],  
− induction of association rules from preference-ordered data sets [23]. 

DRSA gives, moreover, a methodology for building a preference model of 
a decision maker in terms of decision rules. The decision rules have a special 
syntax involving partial evaluation profiles and dominance relation on these pro-
files. The clarity of the rule representation of preferences permits to see the limits 
of other traditional aggregation functions: utility function and outranking relation. 
We proposed an axiomatic characterization of these aggregation functions in terms 
of conjoint measurement and in terms of a set of decision rules. The axioms of the 
“cancellation property” type are the weakest possible. In comparison to other stud-
ies on characterization of aggregation functions, our axioms do not require any 
preliminary assumption about the scales of criteria. A side-result of these investi-
gations is the corollary that the decision rule aggregation (preference model) is the 
most general among the known aggregation functions. 

The application of DRSA to analysis of data representing a preferential in-
formation supplies, moreover, some useful elements of knowledge about the 
decision situation; these are: the relevance of attributes and/or criteria, infor-
mation about their interaction (from quality of approximation and its analysis 
using fuzzy measures theory), minimal subsets of attributes or criteria (reducts) 
conveying the relevant knowledge contained in the exemplary decisions, the set 
of the non-reducible attributes or criteria (core). Moreover, DRSA permits to 
handle heterogeneous information: qualitative and quantitative, preference-
ordered or not, crisp and fuzzy, ordinal and cardinal, partially missing and incon-
sistent. Finally, the proposed methodology is based on elementary concepts and 
mathematical tools (sets and set operations, binary relations), without recourse to 
any algebraic or analytical structures; the main idea is very natural and even 
objective, in a certain sense, like the dominance relation is. 

Due to the above features, DRSA contributes in a very promising way to 
many different areas, like: 
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− knowledge discovery and data mining, where without DRSA the preference 
order in data is ignored, 

− multiple criteria decision analysis, for which DRSA is offering a natural, 
general and intelligible way of modeling DM’s preferences in terms of “if…, 
then…” decision rules, 

− decision under risk, where DRSA handles non-additive probability distribu-
tions and even qualitative ordinal distributions over possible states of the 
world, and offers a decision rule representation of DM’s preferences, 

− approximate reasoning based on fuzzy-rough modus ponens and gradual 
rules induced from fuzzy rough approximations, 

− fuzzy-rough control involving gradual rules.  
The DRSA leads to a preference model of a decision maker in terms of 

decision rules. The decision rules have a special syntax which involves partial 
evaluation profiles and dominance relations on these profiles. The clarity of the 
rule representation of preferences enables us to see the limits of other traditional 
aggregation functions: the utility function and the outranking relation. In several 
studies [16, 17, 20, 42] we proposed an axiomatic characterization of these ag-
gregation functions in terms of conjoint measurement theory and in terms of  
a set of decision rules. In comparison to other studies on the characterization of 
aggregation functions, our axioms do not require any preliminary assumptions 
about the scales of criteria. A side-result of these investigations is that the deci-
sion rule aggregation (preference model) is the most general among the known 
aggregation functions. The decision rule preference model fulfils, moreover, the 
postulate of transparency and interpretability of preference models in decision 
support. 

An interesting research problem concerns measuring attractiveness of de-
cision rules taking into account three application perspectives: (i) knowledge 
representation, (ii) prediction of new decisions and (iii) interventions based on 
discovered rules in some other universe (see [44]). In order to choose attractive-
ness measures concordant with the above perspectives we analyzed semantics of 
particular measures which led us to a conclusion that the best suited measures 
for the above applications are: (i) support and certainty, (ii) a Bayesian confirma-
tion measure [25], and (iii) two measures related to efficiency of intervention 
[5], respectively. These five measures induce a partial order in the set of rules 
giving a starting point for an interactive browsing procedure. For building  
a strategy of intervention, we proposed rules discovered using the DRSA – the 
“at least” type rules indicate opportunities for improving assignment of objects, 
and the “at most” type rules indicate threats for deteriorating assignment of ob-
jects. 
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