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Abstract 

In this paper an extrusion process example is studied to illustrate a new 
methodology in the field of decision engineering, which is based on the rough set 
approach. Rough sets are used to aid   the Decision Maker in choosing the best point  
in the Pareto’s region, which is the zone of the non-dominated solutions. The rough set 
approach allows us to make a rough approximation of a preference relation on a sample 
of experimental points chosen from the Pareto set. These approximations are done  
to induce the decision rules, which can be afterwards applied on whole sets of the po-
tential points. To give the final recommendation the concept of technical robustness  
is suggested. 
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Introduction 

In applications of the rough set approach to the model of the Decision 
Maker (DM) preferences in the multi-criteria problem, the starting point is his 
global evaluation of the subset chosen actions as examples. So, after getting  
the preferential information in terms of exemplary comparisons, it would be 
natural to build the preference model in the form of “if..., then...” decision rules.  
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The consequence of the ambiguity of these evaluations is that some rules are 
non-deterministic, i.e., they cannot be univocally described by means  
of “granules” of the representation of preferential information. A formal 
framework for dealing with the granularity of information; called Rough Set 
theory has been given by Pawlak [9, 7]. The Rough Sets theory assumes  
a representation of the information in a table whose rows correspond to objects 
and its columns to attributes. If a description of objects by a set of attributes  
is supplied by the DM, these attributes are called decisions, and the remaining 
ones conditions, and all together these form the decision table. This decision 
table is a particularly appropriate form for the description of decision sorting 
problems (see [8]). As was shown by Greco, Matarazzo and Slowinski [4],  
a direct application of the Rough Sets approach to multi-criteria decision 
analysis is not possible when the ordinal properties of the criteria have to be 
taken into account. In this paper, and following this way of reasoning,  
a decision table is when the objects are pairs of actions considered. For each 
pair of actions, the partial evaluations of the preferences with respect to each 
attribute are given. The attributes taken from the multi-criteria problem can be 
called conditions. For a chosen subset of pairs of actions, a global preference 
relation from the total order is supposed to be given by the DM or expert.  
In this table, a global preference relation will be noted as the decision attribute.  
In the original theory of Rough Sets the rough approximations are defined using 
an indiscernibility relation on the pairwise comparison table. In this paper 
following the Greco, Matarazzo and Slowinski [6] approach, an indiscernibility 
relation was substituted by a dominance relation. 

This paper is structured as follows. The problem under study is for-
mulated in Section 1. After a brief presentation of the industrial application,  
this section deals with the determination of the Pareto set, which is a pre-
requisite to obtain all possible actions. The aim is to eliminate all points, which 
are not optimal in the multi-criteria problem. The remaining optimal points  
are determined with an evolutionary approach by adapting a genetic algorithm. 
The Decision Maker has to choose the best action in this zone, so, in Section 2, 
a multi-criteria method based on the theory of rough sets is developed  
to support him in his choice. A few experimental points are required  
in this method and it is supposed that the DM is able to express his preferences  
in relation to these points. From these preferences the method of rough sets 
allows us to build the set of rules and they are applied on whole sets of points  
in the Pareto zone to determine the total ranking of the points in Section 3.  
In Section 4, the robustness of the proposed solution is discussed. The solution 
has to take into account a possible evolution of the input parameters  
and a possible change in the decision parameters. A robustness study is pro-
posed for the application of an extrusion process, which is a didactic example. 
So, the results can be easily represented in two dimensions. 
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1. Determination of the Pareto set  

by an evolutionary approach 

1.1. Description of the industrial process 

Let us consider an industrial application concerning the problem of food 
granulation for cattle. The goal is to propose the best recommendation for the 
working conditions of an extrusion process. A pulverulent product is converted 
into granules due to the conjugated effects of heat, moisture and pressure.  
The industrialist would like to simultaneously minimise three characteristics: 
moisture, the friability of his product and the energy consumption of the pro-
cess. Two discretized input parameters are taken into account in this study: the 
flour temperature T (between 35°C and 75°C) and the drawplate profile D 
(between 2 cm and 6 cm). All three attributes are described by functions 
represented in Figure 1.  
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Figure 1. Evaluations of friability index, moisture and energy consumption vs temperature  

and drawplate profile  



Kazimierz Zaras, Laszlo Nandor Kiss, Silvère Massebeuf, Christian Fonteix 268 

These evolutions are derived from Courcoux, Qannari, Melcion  
and Morat [1]. The modelling of these attributes depends on the information at 
our disposal and they are generally incomplete or vague. In this paper, discussed 
application is limited to the deterministic case. In the case of stochastic or de-
terminist evaluations the modelling can be done using the Stochastic Do-
minances (see [12, 13, 14]).    

1.2. Multiobjective optimisation algorithm 

In a real-world problem, like our extrusion process, an optimal working 
condition does not generally exist due to the multi-criteria aspect. In the case  
of the multi-criteria analysis of a process, all possible points have to be de-
termined first. These points, which are called Pareto-efficient solutions,  
are in fact a continuous set, which is not always possible to determine 
analytically. The concept of the Pareto dominance is used which implies that  
a point dominates another if it is better for all criteria. So, the set of the non- 
-dominated points forms the Pareto set. 

A multiobjective optimisation algorithm is developed to obtain the Pareto 
domain sampled by a set of points. The aim of this part is not to immediately 
find the preferred solution but to exclude all conditions which are not in-
teresting, i.e. not optimal in a multi-criteria sense. An extension of the tra-
ditional genetic algorithm is then used to deal with discretized data by in-
troducing the dominance concept. Genetic algorithms are an optimisation 
method which is inspired by an analogy using the evolution of populations [3]. 
The approach consists, after a random initialisation of points, of an evaluation 
of them, a selection of the best points and a recombination of these ones until  
a convergence of the algorithm occurs. Some thousands of points can randomly 
initialise the algorithm. The evaluation of each point is determined by the  
calculation of a dominance function which counts how many times a point  
is dominated by the others [2]. The non-dominated points are kept and are re-
combined to replace the dominated points. The procedure evaluation  
– recombination is applied until all points are non-dominated. This method 
allows us to obtain a set of points, which corresponds to Pareto efficient 
solutions and to also discretize a continuous problem with these points.  
The Pareto set is represented in Figure 2 by 5000 grey points, which define 
precisely the continuous multi-criteria optimal zone. This obtained domain  
is the prerequisite before the preference analysis of the process. 
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Figure 2. Pareto set of the extrusion process for temperature and drawplate profile parameters 
 

2. Rough sets preference analysis 

2.1. Algorithmic design 

The basis for rough sets preference analysis is the building of a decision 
table for a sample of experimental points B chosen from the optimal Pareto’s 
zone. Let X be a set of the output process attributes (in our example: moisture, 
the friability index and the energy consumption) describing the performance  
of points. Let C be the set of condition attributes describing the pairs of points, 
and D the decision attribute. The decision table is defined as 4-tuple, 
(T = < H, C ∪ D, VC ∪ VD, g>), where H ⊆ BxB is a finite set of pairs  
of points, C ∪ D is the union of two sets of attributes, called condition  
and decision attributes, VC ∪ VD is the union of the values of the functions 
which are defined as follows [5]: g: H x (C ∪ D)→VC ∪ VD is a total function 
where VC = ∪Vk (criterion k). This function is such that: 
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where ai is the one point of the temperature-profile parameter combination, 
i, j = 1, ..., n, and Xk (ai) is the value of the performance of the point ai  
in relation to the attribute Xk∈X where  k=1,..., m (in our example m = 3)  
and Ck is the condition attribute associated with the criterion k. The decision 
table can also take only two values g[(ai, aj),D] on H ⊆ B x B : 
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Then, we suppose that the DM is able to express his preferences  
on the small number of points. The appeal of this approach is that the DMs  
are typically more confident exercising their evaluations than explaining them.  
In general, the decision table can be presented as follows in  

 
Table 1 

 
General presentation of the decision table 

  X1 X2 ….. Xm D 
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Let Q ⊆ C be a subset of condition attributes. In relation to the subset  

Q of C attributes (see Zaras (2001)) we can define the Multi-attribute Stochastic 
Dominance noted MSDQ for a reduced number of attributes which  
can be defined as follows. 

Definition 1 

ai MSDQ aj if and only if  g[(ai, aj),k] = 1 for all Ck ∈ Q 
where  Q ⊆ C{1, ..., m} 

(3) 

The problem is how to identify the subsets Q from which we could approximate 
global preferences? To answer this question we use the idea of the approxi-
mation, which was taken from the rough sets of Greco et al. [6] where  
an indiscernibility relation was substituted by a dominance relation. 
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For each pair of alternatives (ai, aj) ∈ H in the decision table we can 
identify Multi-Attribute Dominance MSDQ and complementary Multi-Attribute 
Non-dominance not MSDC-Q where C-Q is the set difference and where this 
second dominance can be defined as follows: 

Definition 2 

ai nonMSDC-Q aj , if and only if  g[(ai,aj),k] = 0 for all Ck ∈ C −Q (4) 

These dominances are similar to the P-positive dominance and P-negative 
dominance suggested by Greco et al. [6] for ordinal data.  
According to them these dominances satisfy the following property: 

Property 1 

If  (ai, aj) ∈ MSDQ ( not MSDC-Q ) then (ai, aj) ∈ MSDR ( not MSDC-R ) 
for each R⊆Q⊆C (5) 

In this approach we propose to approximate the P-global preference relation  
by the MSDQ relation. Usually this approximation in the rough set methodology  
is done by Q*(P)-lower and Q*(P)-upper approximations. According to Greco  
et al. [6] these approximations can be defined as follows: 

( ){ }U
CQ

Q PHMSDPQ
⊆

⊆∩=)(*   
(6) 

( ){ }I
CQ

Q PHMSDPQ
⊆

⊇∩=)(*  

The Q-boundary (doubtful region) of a set of preferences P is defined  
as follows: 
The set BNQ(P) contains the MSDQ which introduces uncertainty in the de-
duction of the decision rules using the subset of attributes Q.  

BNQ(P) = Q*(P) – Q*(P) (7) 
If BNQ(P) ≠ ∅, then P is a rough set. Taking into account property 1, we obtain 
a certain number of the MSDQ, which verifies the condition of the lower 
approximation.  
Analogously, we can approximate a non-preference denoted by the letter N  
in the decision table by the Multi-Attribute non-dominance for a reduced 
number of attributes not MSDQ: 
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We can induce a generalised description of the preferential information 
contained in a given decision table in terms of decision rules.  

2.2. Application 

We apply this algorithmic design in the case of our granulation process 
with the following discretized input parameters: temperature T (between 35 Co 
and 75 Co ) and drawplate profile D (between 2 cm and 6 cm) values on the one 
hand, and the three output attributes: X1: the friability index, X2: the moisture  
of the granules and X3: the energy consumption on the other hand. The criteria 
role has been attributed to minimise all three output attributes. To illustrate  
the application of the Rough Set approach, we began by showing in Table 2  
the subset of five points chosen by a human expert and their evaluations  
in relation to each of the three attributes. 

 
Table 2 

 
Evaluations of the five chosen actions for three attributes 

Actions X1 X2 X3 

a1 2.0495 13.361 7.8915 
a2 2.0925 14.998 5.4695 
a3 3.3122 14.096 4.7477 
a4 2.9819 10.128 20.871 
a5 4.3177 10.225 17.916 

 
Figure 3 shows us the localisation of these five points in relation  

to the Pareto domain which was determined analytically from the equations 
(13). 
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Figure 3. The subset of five points chosen by a human expert and the Pareto domain which was 

determined analytically 
 
These points have been ordered by the DM from the best to the worst. 

Then, we can add the decision attribute D to Table 3 which makes a dichotomic 
partition of the set of pair points according to the values VD = P, which means 
preference and VD = N, which means non preference.  
 

Table 3 
 

Decision table for the five chosen points 

 Pairs X1 X2 X3 D 
 
 
 
 
 

HP 

(a1, a2) 
(a1, a3) 
(a1, a4) 
(a1, a5) 
(a2, a3) 
(a2, a4) 
(a2, a5) 
(a3, a4) 
(a3, a5) 
(a4, a5) 

1 
1 
1 
1 
1 
1 
1 
0 
1 
1 

1 
1 
0 
0 
0 
0 
0 
0 
0 
1 

0 
0 
1 
1 
0 
1 
1 
1 
1 
0 

P 

P 
P 
P 
P 
P 
P 
P 
P 
P 
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Table 3 contd. 

 Pairs X1 X2 X3 D 
 
 
 
 
 

HN 

(a2, a1) 
(a3, a1) 
(a4, a1) 
(a5, a1) 
(a3, a2) 
(a4, a2) 
(a5, a2) 
(a4, a3) 
(a5, a3) 
(a5, a4) 

0 
0 
0 
0 
0 
0 
0 
1 
0 
0 

0 
0 
1 
1 
1 
1 
1 
1 
1 
0 

1 
1 
0 
0 
1 
0 
0 
0 
0 
1 

N 

N 
N 
N 
N 
N 
N 
N 
N 
N 

 
According to definition (6), from Table 4 we obtain one dominance 

relation which intersects with five pairs of points and which verifies the con-
dition of the lower approximation. 
 

Table 4 
 

Dominance which intersects with five pairs of points in the decision table 

MMDQ /H (a1, a4) (a1, a5) (a2, a4) (a2, a5) (a3, a5) 

Q = {X1, X3} x x x x x 

 
From this we can induce the minimal decision rule, which can be formulated as 
follows: 
 
Rule 1 

If  ai MMDQ aj then ai P aj , with Q = {X1, X3} (9) 
The meaning of this rule is that if the point ai in the Pareto’s zone is better 

that the point aj with respect to friability index and energy consumption, then 
the point ai is preferred to point aj. In the same way we can do the approxi-
mation of non-preference N by the Multi-Attribute non-dominance not MMDQ. 
According to the definition (9) from Table 5, we obtain one non-dominance 
relation which intersects with five pairs of points and which verifies the con-
dition of lower approximation. 
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Table 5 

 
Non-dominance which intersects with five pairs of points in the decision table 

Not MMDQ /H (a4, a1) (a5, a1) (a4, a2) (a5, a2) (a5, a3) 

Q = {X1, X3} x x x x x 

 
Based on the same principle as in the case of preference choosing, we can in-
duce the rule as follows: 
 
Rule 2 

If  ai not MMDQ aj then ai N aj , with Q = {X1, X3} (10) 
The last step of the suggested methodology is to apply the rules to order  
the whole set of points. 

3. Ranking deduction from rough approximation 

3.1. Algorithmic design 

 The overall binary preference relation noted (P) is identified if Rule 1  
is fulfilled between points. If the second rule is fulfilled, the overall non- 
-preference is identified which is noted (N). In general, it is possible to induce 
decision rules being propositions of the following type:  

1. D++ decision rule, which is a proposition of the type:  
if  ai MMDQ aj then ai P aj. 

 

2. D-- decision rule, which is a proposition of the type:  
if  ai notMMDQ aj then aj N ai. 

(11) 

The final set of decision rules is the set of minimal decision rules. According  
to Greco et al. [6]  a D++ decision rule [D+- decision rule] ai MMDQ aj  → ai P aj 

[if  ai not MMDQ aj → ai N aj ] will be called minimal if there is not any 
other rule 
ai MMDR aj  → ai P aj [if  ai not MMDR aj → ai N aj ] such that R⊆ Q. 

(12)

For each point ai  let   
SC++(ai) = card({ aj ∈ A: there is at least one D++  − decision rule stating that  
ai P aj }), 
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SC+-(ai) = card({ aj ∈ A: there is at least one D++  − decision rule stating that  
aj P ai }), 
SC-+(ai) = card({ aj ∈ A: there is at least one D--  − decision rule stating that  
aj N ai }), 
SC--(ai) = card({ aj ∈ A: there is at least one D--  − decision rule stating that  
ai Naj }). 
To each ai ∈ A we assign a score, called Net Flow Score (see [6]), 
SNF(ai) = SC++(ai) – SC+-(ai)+ SC-+(ai)- SC- -(ai). 

The final recommendation is the best point established by ranking 5000 
points in decreasing order of the value of the SNF(ai) on A. The rough sets 
approach gives us a clear recommendation: the best combination of two input 
parameters is temperature 74.85 Co and drawplate profile diameter 2.80 cm. 
This combination of input parameters assumes the following values of three 
output attributes, the friability index = 1.89, the moisture of granules = 14.84,  
and the energetic consumption = 6.02. Figure 4 shows the results plotted 
quintile by quintile and the best recommendation (black diamond) for a better 
understanding.  
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Figure 4. Total ranking of the Pareto set presented quintile by quintile 
 

The first 1000 actions are represented in grey around the best action,  
the second in black, etc. From this figure, we can notice that the best point  
is on the border of the Pareto’s zone. Then, this remark leads us to study  
the robustness of this best recommendation. 
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4. A robustness study 

Robustness is connected to the fact that the decision-aid methods often 
contain parameters whose values have to be chosen (more or less arbitrary)  
by the user. In our example we have two input parameters: temperature T 
(between 35oC and 75oC ) and drawplate profile D (between 2 cm and 6 cm). 
For different instances of parameter values the zone Pareto represents  
the feasible part of the result obtained by application of the genetic algorithm 
taking into account the three criteria for minimisation: the friability index,  
the moisture of granules and the energy consumption. The case of the robust 
solution was discussed by Roy and Bouyssou [10] and Roy [11]. Roy [11] 
suggests three kinds of assertions in order to establish recommendations: a 
perfectly robust where the domain of the result for all parameter values is well 
known, an approximately robust where a perfectly robust conclusion is not 
necessarily identified and a pseudo-robust conclusion which is a more or less 
formal statement concerning all parts of the result for all parameter values.  
In our example, the points in the Pareto’s zone are approximately robust 
because of the variation of the working conditions of the process, which can put 
them out of the optimal zone. 

5.1. Technical robustness 

Therefore, we propose the concept of technical robustness defined as sta-
bility of the result when technical parameters have small variation. In our 
example, a point on the border of the Pareto set could be considered as robust 
where no variation of the working conditions of the process is observed. In  
the real world of the industrial process this condition is rarely verified. This is 
why we suggest the hypothesis that the robustness of the points in the Pareto’s 
zone increases with the distance of the point from the boundary. We call this 
concept the technical robustness because this analysis is made before the rough 
set approximation of the preference, which allows us to do the final re-
commendation.  So, another criterion may be defined to take into account  
the robustness of the solution. Maximise the distance between a point  
and the border can be considered as a supplementary objective when  
the Pareto’s zone is already found. This concept allows us to decrease  
the impact of a possible instability of the system. 
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From a theoretical point of view the borderline of the Pareto zone  
is represented by three non-dominated branches determined by the locus  
of points where isocriteria of the attributes are tangent pairwise: 

CTandcmDfor
T

TTD o6.6291.3
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52324.7135335.0005.0 2

≥≤
+−

+−
=  

166196.010*175.4
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4

24

+−
+−

=
−

−

T
TTD
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o7535

62

≤≤
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 (13) 

00268384.01116062.0712418.0()00295924.004227664.0(10*0198.3 224 =−+++−+− DDTDT

CTandcmDfor o6.6291.3 ≤≥  

In Figure 3 the border of the theoretical Pareto domain is showed  
by the bold line with the five points chosen by the human expert. The distance 
between a point and the border is calculated in terms of temperature because  
the drawplate profile is considered stable and can have standard characteristics. 
For given drawplate profile D0 two distances are calculated between  
the temperature T0 and the lower border temperature T1(D0) and the higher 
border temperature T2(D0). These distances are maximised in relation to zero  
in such a way that: 

d1 = Max {T0 − T1(D0), 0}; d2 = Max {T0 − T2(D0), 0} (14) 

The negative value of the difference between temperatures shows us that 
the point is out of the Pareto domain. Finally, the value of the distance which is 
taken to the technical robustness analysis is as follows: 

d = Min {d1;d2 } (15) 

In our granulation process, the rough sets preference analysis is applied 
by taking into account a fourth attribute X4: the technical robustness, which  
is a distance d to maximise. Table 6 shows the five points chosen by the human 
expert, their respective four conditional attributes and ranking (it is the same 
ranking as previously). So, our rules changed and another total ranking  
are deducted. 
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Table 6 

 
Evaluations of the five chosen actions for four attributes 

Actions X1 X2 X3 X4 

a1 

a2 
a3 
a4 
a5 

2.0495 
2.0925 
3.3122 
2.9819 
4.3177 

13.361 
14.998 
14.096 
10.128 
10.225 

7.8915 
5.4695 
4.7477 
20.871 
17.916 

7.2253 
0.6671 
16.674 
0.0625 
0.0000 

 
Then, we can add the decision attribute D to Table 7 which makes  

a dichotomic partition of the set of pair points. 
 

Table 7 
 

Decision table for the five chosen points and for four conditional attributes 

 Pairs X1 X2 X3 X4 D 
 
 
 
 
 

HP 

(a1, a2) 
(a1, a3) 
(a1, a4) 
(a1, a5) 
(a2, a3) 
(a2, a4) 
(a2, a5) 
(a3, a4) 
(a3, a5) 
(a4, a5) 

1 
1 
1 
1 
1 
1 
1 
0 
1 
1 

1 
1 
0 
0 
0 
0 
0 
0 
0 
1 

0 
0 
1 
1 
0 
1 
1 
1 
1 
0 

1 

0 
1 
1 
0 
1 
1 
1 
1 
0 

P 

P 
P 
P 
P 
P 
P 
P 
P 
P 

 
 
 
 
 

HN 

(a2, a1) 
(a3, a1) 
(a4, a1) 
(a5, a1) 
(a3, a2) 
(a4, a2) 
(a5, a2) 
(a4, a3) 
(a5, a3) 
(a5, a4) 

0 
0 
0 
0 
0 
0 
0 
1 
0 
0 

0 
0 
1 
1 
1 
1 
1 
1 
1 
0 

1 
1 
0 
0 
1 
0 
0 
0 
0 
1 

0 

1 
0 
0 
1 
0 
0 
0 
0 
0 

N 

N 
N 
N 
N 
N 
N 
N 
N 
N 

 
According to definition (6), from Table 8 we obtain one dominance 

relation which intersects with seven pairs of points and which verifies the con-
dition of the lower approximation. 
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Table 8 

 
Dominance which intersects with seven pairs of points in the decision table 

MMDQ/H (a1, a2) (a1, a4) (a1, a5) (a2, a4) (a2, a5) (a3, a5) (a4, a5) 

Q = {X1, X4} x x x x x x x 
 

From this we can induce the minimal decision rule, which can be 
formulated as follows: 
 
Rule 3 

If  ai MMDQ aj then ai P aj , with Q = {X1, X4} (16) 

The meaning of this rule is that if the point ai in the Pareto’s zone is better 
that the point aj with respect to friability index and to the distance from  
the boundary, then the point ai is preferred to point aj. In the same way we can 
do the approximation of non-preference N by the Multi-Attribute non- 
-dominance not MMDQ. According to the definition (9) from Table 9, we obtain  
one non-dominance relation which intersects with seven pairs of points  
and which verifies the condition of lower approximation. 
 

Table 9 
 

Non-dominance which intersects with seven pairs of points in the decision table 

MMDQ /H (a2, a1) (a4, a1) (a5, a1) (a4, a2) (a5, a2) (a5, a3) (a4, a5) 

Q = {X1, X4} x x x x x x x 
 

Based on the same principle as in the case of preference choosing, we can 
induce the rule as follows: 
 
Rule 4 

If  ai not MMDQ aj then ai N aj , with Q = {X1, X4} (17) 

The last step of the robustness analysis is to apply the rules 3 and 4 to order 
once again the whole set of points. 

The rough approximation then gives a new recommendation: 66.00°C  
as the best temperature and 2.82 cm is the best drawplate profile. This combi-
nation of input parameters assumes the following values for the four output 
attributes: X1 = 1.99, X2 = 13.86, X3 = 6.62 and X4 = 7.53. We can notice  
that this action is different when compared to the one found in the previous part. 
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But, the most important information from this ranking is that the best re-
commendation is a robust one, because a little variation of the temperature (e. g. 
difficulty to control the temperature in the granules) does not alter the product 
quality, the point stays in the Pareto set. Figure 5 shows the results of this new 
total ranking plotted quintile by quintile and the best recommendation (black 
diamond). 
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Figure 5. Total ranking of the Pareto set by taking into account the technical robustness 
 

We can notice that the first quintile is represented in two parts  
in the middle right and the middle left of the Pareto’s zone. This leads to con-
firm the importance of a criterion like the technical robustness. 

Conclusion 

The Rough Set approach has been used for the analysis of preferential 
information concerning multi-attribute choices in the Pareto’s zone. This infor-
mation is given by the DM as set of pairwise comparisons among some 
reference points. Taking into account these preferences, we deduce the rules. 
These rules represent the preference model of the DM, which can be applied  
to a whole set of points in the Pareto’s zone. 

After obtaining of the total ranking of the actions, the robustness  
of the results has been studied. The technical robustness has been added  
as another criterion to take into account a possible degradation of the working 
condition. So, this study has been able to propose a very good action, which  
can be defined as a robust one from technical points of view. 
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