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Abstract 

Most popular Evolutionary Algorithms for single multi-objective optimisation 
are motivated by the reduction of the computation time and the resolution larger 
problems. A promising alternative is to create new distributed schemes that improve  
the behaviour of the search process of such algorithms. In the multi-objective 
optimisation problems, more exploration of the search space is required to obtain  
the whole or the best approximation of the Pareto front. Almost all proposed Parallel 
Multi-Objective Evolutionary Algorithms (PMOEAs) are based on the specialisation 
concept which means dividing the objective and/or the search space then assigning each 
part to a processor. One processor called the organiser or the coordinator is usually 
charged to direct the whole algorithm. In this paper, we present a new parallel scheme 
of multi-objective evolutionary algorithms which is based on a clustering technique. 
This new parallel algorithm is implemented and compared to three PMOEAs which  
are cone-separation [1], Divided Range Multi-Objective Genetic Algorithm 
(DRMOGA) [8] and a Parallel Strength Pareto Evolutionary Algorithm (PSPEA) based 
on the island model without migration. 
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Introduction 

Evolutionary Algorithms (EAs) are adaptive methods that have proven 
successful in the resolution of several optimisation problems. They are based  
on the genetic evolution process of Darwin. EAs make evolve a set of solutions, 
called population of individuals. A new population is produced while selecting 
parents among the most excellent individuals of the “present generation”  
to perform crossover and mutation. The new population will contain a bigger 
proportion of features from the best individuals of the previous generation.  
The search is thus guided towards the most promising regions of the search 
space. In Multi-objective Optimisation Problems (MOP), a set of conflicting 
criteria have to be simultaneously optimised. The aim is to find a set of non 
dominated solutions rather than one solution in the single objective optimisation 
case. EAs are particularly suitable to solve MOP. They perform well global 
search, since they simultaneously explore different regions of the search space. 
To obtain a set of diversified non dominated solutions, Multi-Objective 
Evolutionary Algorithms (MOEAs) integrate techniques such as elitism and 
diversity (crowding, sharing) (NSGA-II [4], SPEA-II [15], NPGA-II [6]). These 
techniques have proven successful in deriving good Pareto optimum solutions. 
However, their high computing time constitutes a major drawback. Parallel 
computing has been applied to MOEAs so as to accelerate solving problems [2]. 
Moreover, parallelism offers a best exploration of the search space by the 
cooperation between populations evolving with different genetic operators. 
Several approaches have been proposed to parallelise both EAs and MOEAs.  
In the single objective case, Parallel Evolutionary Algorithms (PEAs) exploit  
the intrinsic parallelism in the algorithm. In fact, fitness evaluation, crossover 
and mutation operators can be performed independently on different individuals 
and thus can be easily distributed. In the multi-objective case, most Parallel 
Multi-Objective Evolutionary Algorithms (PMOEAs) are based on the algo-
rithmic “divide to conquer” principle: divide the objective/search space among 
available processors while favouring migration between sub-populations. Each 
processor will concentrate its search in a specific region of the search space 
(specialisation).  

In this paper, we propose a new parallel evolutionary algorithm for multi- 
-objective optimisation named „[…] parallel multi-objective evolutionary 
algorithm with Multi-Front Equitable Distribution” (MFED). MFED, which  
is based on the island model, uses a clustering technique to divide the global 
population into sub-populations. MFED is implemented and compared  to  three 
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PMOEAs: cone-separation [1], Divided Range Multi-Objective Genetic 
Algorithm (DRMOGA) [8] and a Parallel Strength Pareto Evolutionary 
Algorithm (PSPEA) based on the island model without migration. 

This paper is organised as follows: Section 1 gives common paralleli-
sation approaches of EAs. Section 2 deals with PMOEAs. Then, in Section 3, 
the MFED is described. Test results and comparisons are presented and ana-
lysed in Section 4. Finally, conclusions will be highlighted. 

1. Parallel evolutionary algorithms 

Parallel architectures permit to get some very satisfactory results  
in parallelising EAs. Parallel genetic algorithms are roughly classified into three 
categories: master-slave population model, island model, and cellular model [2]. 

Master-slave model 

The master-slave model is based on a simple parallelisation of the fitness 
calculation stage or of the recombination/evaluation steps. In the first case,  
a single station (called master) manages the algorithm itself (selection/re-
placement and genetic operators), and sends the performance computation  
to other stations (called slaves). In the second case, the master centralises  
the population and manages the selection and the replacement steps. It sends  
the sub-populations to the workers that execute the recombination and evalu-
ation steps. This model is useful only for a small number of processors and high 
fitness computing time [1]. 

Island model 

The island model, which is also called coarse-grained model or distri-
buted model, divides the population into small sub-populations. Each of them 
will evolve in a certain processor, following a traditional diagram to which  
a stage of migration is added. In other words, every sub-population transmits its 
good individuals towards the neighbouring sub-populations in a “common pool” 
(this choice depends on the relative cost of communications between pro-
cessors). Then, every sub-population receives individuals which are sent  
by neighbours, or which already exist in the central pool. 

The island model modifies the basic genetic algorithm and introduces 
some new parameters (i.e. the migration strategies and the topology of the net-
work) [2]. It becomes particularly interesting when the number of processors  
is lower than the population size [1]. 
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This model is better adapted than the precedent one to parallel machines. 
It is a very popular model since it is very easy to apply on a local network with 
standard workstations. Moreover, it offers the possibilities that every sub-
population can evolve using some different parameters. {?} 

Cellular model 

The cellular model distributes a unique population among several 
processors (in general on massively parallel machines). On each processor some 
individuals (often only one) evolve. Then, the selection, replacement and 
crossover operations are outperformed between “neighbourhood individuals” 
for the topology of the processor network. This model is particularly suitable  
for massively parallel computers with a fast local intercommunication network.  

A detailed discussion of parallelisation approaches for EAs is found  
in [1, 3]. 

2. Parallel multi-objective  
evolutionary algorithms 

MOEAs look for a whole set of Pareto-optimal solutions. Therefore, they 
require more exploration of the search space and more computation  
to characterise the Pareto-optimal front than the single objective EAs. For  
that reason, several works ([11], [5], [1], [8], etc.) discuss the manner  
to parallelise them. Since the resolution of MOP aims at finding a set of di-
fferent trade-off solutions between the objectives, the most natural parallel 
scheme was to assign different parts of the search/fitness space to different 
processors. Each process will focus its computation on a specific region 
(explore one region) of the search space to characterise one area of the global 
Pareto optimal front. That’s why most proposed PMOEAs are based on  
the island model and deal with the manner of dividing the search space and/or 
the fitness space between the different processors. In this section we limit our 
focus on DRMOGA [8] and Cone Separation [1] in order to compare them  
to our new parallel model. 

DRMOGA 

Hiroyasu et al. [8] have developed a Divided Range Multi-Objective 
Genetic Algorithm (DRMOGA) based on an island model where the Pareto- 
-optimum solutions, which are close to each other, are collected by one sub-
population. All individuals are  gathered  in  the  master  process  and  are  again 
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divided among the different processors. Each sub-population receives a set  
of N/m individuals (N is the population size and m is the number of processors) 
selected according to the value of the objective function considered fi  
(the objectives are considered in turn). Figure 1 shows the division of the 
population according to the objective f1 in the case of a bi-objective optimi-
sation problem and three processors. An improvement version of DRMOGA 
uses a sharing operation for Pareto-optimum solutions when the number  
of the frontier solutions exceeds a given size. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. DRMOGA: distribution of the population according to the first objective with 3 pro-

cessors 
 

Cone separation 

Branke et al. [1] normalise the fitness values and then they partition  
the fitness space into equal cones. In the bi-objective case, the population  
is within the unit square after normalisation. They start from the reference point 
(1,1) and divide the 90° angle that encompasses the non-dominated front into 
equal parts (see Figure 2). The fitness space is renormalised at regular intervals 
leading to a migration step of individuals to processors specialised on the cone 
to which they belong.  
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Figure 2. Cone-separation with 2 objectives functions problem and 3 processors  

 

3. Parallel Multi-Objective Evolutionary Algorithms  
with multi-front equitable distribution  

Most PMOEAs are based on the specialisation concept where neigh-
bouring solutions in the search/objective space live and progress on the same 
island. Thus, these models authorise only crossover of individuals close to each 
other. This fact may result in a lack of diversity among sub-populations, in  
a stagnation of the search and thus in a rapid convergence. Moreover, in  
the case of a multi-objective optimisation problem for which the Pareto Optimal 
Front (POF) is discontinuous, individuals of the same sub-population may 
belong to extreme zones of two continuous portions of the Pareto Front (PF). 

Our new algorithm is an island model. As the previous PMOEAs,  
it is based on the algorithmic principle “divide to conquer”. Yet, it is different 
from the others in the fact that no sub-population focuses its computation on  
a specific region of the search/fitness space. Each processor focuses its com-
putation over all promising regions of the search space that are already disco-
vered within the global population. In fact, MFED functions as a multi-start 
optimisation procedure where an elitist MOEA evolves on each processor with 

f1 

f2 

α = 30o
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its proper starting sub-population. These sub-populations cooperate through  
a recombination/distribution mechanism. This parallel model divides the global 
population among the available processors so that each one receives a re-
presentative set of solutions from the global population. Each sub-population 
uses its proper genetic operators (crossover and mutation). In this way, 
diversification among sub-populations will be maintained.  

The main algorithm consists of several elitist MOEAs. One processor,  
the organiser, has the responsibility of collecting individuals from the other pro-
cessors and then redistributing them.  

Every processor k (k=0, 1,…, p) constitutes its first n Pareto fronts found 
(n is a parameter) as follows: the non-dominated individuals of the sub- 
-population Pk of the processor k constitute the first front F1k. The set of non-
dominated individuals in Pk \ F1k makes up the second front F2k. This scheme  
is repeated until the first n PFs are created. After that the processor sends them  
to the organiser. 

The organiser gathers individuals sent by all processors (the organiser 
and the others) in order to create the first n global Pareto fronts. The redistri-
bution mechanism is described as follows: each global Pareto front GFi 
( { }1,...,i n∈ ) is first partitioned into NC clusters (NC is a parameter). After 
that, every cluster is redistributed with equity between the available processors. 
Each processor will receive at least one individual from each cluster.  

Let’s consider a cluster CL of |CL| individuals. If p≤|CL| then the pro-
cessor k (k=0,1, ..., p-1) receives from CL all individuals j (j=0, ..., |CL|-1) such 
that j%p = k. Otherwise the processor k will receive the individual j such that 
k%|CL|=j. 

In this way, each processor receives a good approximation of the first n 
global Pareto fronts which is different from the sets received by the others.  
We maintain diversity in each sub-population and especially in the Pareto front. 
After the redistribution process, the size of each sub-population will be in-
creased by crossover so that this sub-population will be equal to its initial size 
N/p, N is the population size.  

We have used an agglomerative clustering algorithm that begins with 
each individual representing a single cluster. At each step, the distance between 
each two different clusters is calculated as the maximal Euclidean distance 
between two individuals from these clusters. Then, the nearest two clusters with 
respect to the distances calculated are merged. These steps are repeated until the 
number NC of desired clusters is obtained.  
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Figure 3. Equitable distribution of the first and the second front 

 
The pseudo-code of the algorithm is the following: 

I. Parameters: 
N:  population size, 
NC:  number of clusters, 
T:  maximum number of generations, 
C:  interval of migration, 
n:  number of fronts to distribute. 
II. Step 1. Initialization: randomly generate an initial sub-population P0.  

The global population size is N. The size of each sub-population is N/P  
(p is the number of processors) 

Set t=0. 
III. Step 2. Evolutionary computation:  
1. If t≠0 then increase the size of the sub-population by crossover. 
2. Run a Multi-objective genetic algorithm for C generations. 
IV. Step 3. Recombination/redistribution of the first n global fronts:  
1. Each process sends its first n Pareto fronts to the organiser. 
2. The organiser process: 

f1 

f2 

First front 

Second front

Individuals received  
by Processor 3:  

Individuals received  
by Processor 1:    

Individuals received  
by Processor 2: 
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– Creates the first n global fronts, 
– divides the ith global front into NC clusters (i=1, …, n), 
– distributes each cluster with equity between all the processors. 

V. Step 8. Termination: if t=T, stop the algorithm, else go to Step 2. 

4. Experimental results 

In this section, we study the performance of the MFED and the following 
PMOEAs: DRMOGA, Cone-Separation and PSPEA which is a standard island 
(no migration). PSPEA is a parallel version with an independent SPEA running 
on each processor. The four parallel schemes studied are based on the Strength 
Pareto Evolutionary Algorithm (SPEA) [14] which is one of the most popular 
elitist MOEAs. It utilises an external population (the archive) in order  
to preserve diversity and prunes it when a predetermined size is exceeded. Four 
test problems [14, 15], which include: convex (ZDT1), non-convex (ZDT2), 
discontinuous (ZDT3) and non-uniform (ZDT6) Pareto Optimal Front (POF), 
are chosen for this comparative study (see appendix A). To solve the test 
functions, we have used bit coding for representing individuals. 20-bit length  
is used for each design variable of the problems studied. Since each sub-
population evolves with its proper genetic operators, we have implemented 
three crossover operators (one point, two points and uniform crossover) and two 
mutation operators (one point and mapping mutation).  

The parameters of the elitist MOEA are: 
– Population size (N): 300 individuals distributed among the available pro-

cessors.  
– Archive size (N): 200 individuals.  
– Maximum number of generations (T): 1000. 
– Crossover probability (Pc): 0.86. 
– Mutation probability (Pm): 0.1 
– C: interval of the global clustering: 20 (distribution every 20 generations). 
– Number of processors: 4. 

All algorithms are implemented using C++ language on a local network 
with Pentium IV 2.4 GHz 80 Gb computers under Windows XP. The communi-
cation between the processors has been supported by the freely available 
MPICH (Message Passing Interface) parallelisation library.  

To compare the results derived from each algorithm, we use the fol-
lowing metrics:   
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1. The spacing indicator gives a good indication of how evenly the solutions 
are distributed in the objective space. It is defined as: 
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where n is the number of solutions in the current front PO, di is the Euclidean 
distance in the objective space between the solution i in PO and its nearest 
solution in POF.  

The smaller the spacing is, the more regularly distributed the solutions  
in PO are: 
2. The S-metric (Hypervolume) [17] gives the size of the objective space 

enclosed by POF and a reference point Zref. 
3. The generational distance [15] measures how far the elements in the set  

of non-dominated vectors found (PO) are from those in the Pareto optimal 
set (POF). For instance, it represents how far the current front PO is from  
the optimal front POF. Its value is defined as: 
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where n is the number of individuals in the current front PO and di  
is the Euclidean distance between any of the individuals and the nearest 
individual from the Pareto-optimal front.  

Ten trials are launched for each configuration. Then, the min, max  
and average for each performance metric are given. 

ZDT1 problem 

The results of the four algorithms are similar with respect to the S metric 
(Table 1). DRMOGA and Cone Separation result in a better distribution  
of solutions in the PO set found since they produce the smallest values for  
the spacing (Table 1). Indeed, the reproduction of neighbouring individuals  
in these two parallel models, which are based on the specialisation concept, 
generates close individuals in the objective space. The approximation of the true 
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Pareto front obtained by Cone Separation is the nearest one to POF since  
it obtains the least value for the generational distance (Table 2). MFED is less 
effective than the other models concerning the spacing and the generational 
distance. This stems from the fact that each sub-population in MFED performs 
computation on all promising regions of the search/objective space discovered 
and thus converges less rapidly than the other algorithms. Due to the easiness  
of this problem (the Pareto front is convex and uniform), the three algorithms 
PSPEA, DRMOGA and Cone Separation have produced results close to each 
other. 

 
Table 1 

 
Results for ZDT1 problem: S metric and Spacing 

Algorithm 
Smetric Spacing 

Min Mean Max Min Mean Max 

PSPEA 0,65201 0,654164 0,654164 0,0019373 0,00367523 0,00367523 

DRMOGA 0,645368 0,6483987 0,650027 0,00365695 0,00512045 0,00627473 

Cone separation 0,649734 0,6512663 0,652182 0,00204366 0,0031909 0,00410994 

MFED 0,652839 0,6542778 0,655483 0,0104054 0,01245304 0,0167373 
 
 

Table 2 
 

Results for ZDT2 problem: Generational distance 

Algorithm 
Generational distance 

Min Mean Max 

PSPEA 5,23E-05 8,62E-05 0,00016884 

DRMOGA 3,32E-05 4,63E-05 7,54E-05 

Cone separation 1,28E-05 1,44E-05 1,65E-05 

MFED 0,00014301 0,000646334 0,00232182 

 

ZDT2 problem 

The results for the S metric (Table 3) and the generational distance 
(Table 4) for the ZDT2 problem show that the MFED outperforms the other 
parallel algorithms according to these two metrics. MFED achieves a good 
approximation of the true Pareto optimal front POF. Its results for the spacing 
metric are the worst when compared to those of DRMOGA and Cone Se-
paration. We can conclude that the non-dominated solutions found by MFED 
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are not uniformly distributed in the objective space. This may be due to the non- 
-convexity of the POF so that some regions in the objective space are not  
as well explored as the others. On average, PSPEA, DRMOGA and Cone 
Separation provide similar results for the S metric (Table 3) but cone separation 
slightly improves the spacing. 
 

Table 3 
 

Results for ZDT2 problem: S metric and Spacing 

Algorithm 
Smetric Spacing 

Min Mean Max Min Mean Max 

PSPEA 0,4871 0,4892946 0,4871 0,0051399 0,0047197 0,0058635 

DRMOGA 0,474847 0,4832458 0,49057 0,0037625 0,00682405 0,0104535 

Cone separation 0,4889 0,4935705 0,496057 0,00232241 0,00360916 0,00574457 

MFED 0,318422 0,3216687 0,325326 0,00932995 0,01202236 0,0147275 
 
 

Table 4 
 

Results for ZDT2 problem: Generational distance 

Algorithm 
Generational distance 

Min Mean Max 

PSPEA 0,00255696 0,003288901 0,00360972 

DRMOGA 0,0049013 0,00587651 0,0069419 

Cone separation 1,2775E-05 0,004449959 0,00515236 

MFED 0,00022007 0,000747621 0,00158096 
 

ZDT3 problem 
 

Table 5 
 

Results for ZDT3 problem: S metric and Spacing 

Algorithm 
Smetric Spacing 

Min Mean Max Min Mean Max 

PSPEA 0,740543 0,8400583 0,86043 0,00378297 0,0087262 0,0121672 

DRMOGA 0,318422 0,4476161 0,863358 0,00232241 0,00679382 0,0209619 

Cone separation 0,841538 0,8473562 0,85312 0,00486804 0,00789774 0,0167653 

MFED 0,778603 0,7791379 0,779501 0,00366007 0,00673456 0,00869159 
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Table 6 

 
Results for ZDT3 problem: Generational distance 

Algorithm 
Generational distance 

Min Mean Max 

PSPEA 0,00085425 0,001182975 0,00140321 

DRMOGA 0,00221447 0,00309332 0,0044729 

Cone separation 0.00153496 0.00179118 0.00201776 

MFED 1,6994E-07 2,51092E-07 3,90953E-07 

 
The problem ZDT3 is discontinuous, so the spacing is not significant.  

As shown in Table 5, the experimental results show that DRMOGA is capable 
of providing better quality of solutions with respect to the S metric than all  
the other algorithms. The results of PSPEA and Cone Separation on the three 
considered metrics are very close (Table 6 and Table 5). From Table 6, we con-
clude that MFED clearly performs better with respect to the generational 
distance. Since the Pareto front is discontinuous, the division of the objective 
space into cones in Cone-Separation may result in empty cones, so that it re-
duces the performance and the convergence of this algorithm. However, MFED 
is less affected by the discontinuity of the POF than the other methods. 

ZDT6 problem 
Table 7 

 
Results for ZDT6 problem: S metric and Spacing 

Algorithm 
Smetric Spacing 

Min Mean Max Min Mean Max 

PSPEA 0,702722 1,4089039 2,25275 0,0438337 0,19234355 0,548809 

DRMOGA 1,00986 1,611229 2,07032 0,0344967 0,22391992 0,834136 

Cone separation 1,72002 1,722573 1,72408 0,00286583 0,01388675 0,0669603 

MFED 4,48067 4,482684 4,48369 0,00898641 0,11755475 0,608804 
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Table 8 

 
Results for ZDT6 problem: Generational distance 

Algorithm 
Generational distance 

Min Mean Max 

PSPEA 0,599989 1,2432687 2,09514 

DRMOGA 1,04722 1,520106 1,92963 

Cone separation 0,0119125 0,01499197 0,0173161 

MFED 5,9604E-08 0,012355877 0,0707847 

 
Table 7 shows that cone separation, DRMOGA and PSPEA largely 

outperform MFED with respect to the S metric. Since ZDT6 has a non-uniform 
POF, the spacing metric is not very significant. Nevertheless, the spacing value 
obtained by Cone Separation is remarkably lower than the others (Table 7). 
Cone separation generates a set of non-dominated solutions which are near  
to the true Pareto front (Table 8) and fairly dispersed in the objective space.  
For ZDT6, the only difficulty is that the POF has a non-uniform distribution  
of its points. The performance of MFED is very much affected by the equitable 
distribution of the fronts. So, the distribution decreases the convergence of each 
sub-population.  

Conclusions  

This paper proposes a new parallel model of genetic algorithms for multi- 
-objective optimisation problems which is based on the clustering technique.  
In MFED, at regular intervals, each island receives an initial sub-population  
that is different from those received by the others. Then it performs a search 
over all the promising regions found in the search space. The idea of the equi-
table distribution insures the reception of a set of representative individuals  
of these promising regions, by each processor. At the same time, MFED 
increases the convergence to the true Pareto front. Thanks to the use of different 
genetic operators in each island, the diversity all over the population is main-
tained. Experiments have been carried on four PMOEAs ( MFED, DRMOGA, 
PSPEA and Cone Separation) while using a well known multi-objective 
benchmark function set that covers a wide range of difficulties (discontinuity, 
non-convexity, non-uniformity) in finding the Pareto front. Experimental results 
have shown that the performance of each model depends on the shape  
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of the search space. The MFED outperforms the other algorithms on the ZDT3 
problem which has a discontinuous POF, while DRMOGA and Cone Separation 
perform better on the ZDT1 problem with convex POF. But, MFED converges 
less rapidly than the others.  

On the one hand, the PMOEAs that are based on the specialisation 
concept ensure a good performance vis à vis some difficulties or vis à vis some 
performance criteria. On the other hand, MFED that doesn’t limit each island  
to a specific region of the search space, (each island perform a global explo-
ration), succeeds where the other algorithms fail. Thus, the two division/re-
distribution mechanisms are complementary and essential for improvement  
of results in different types of problems. 

Appendix 

The benchmark functions set used in this work addresses the following 
minimisation problem: 
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3. ZDT3. 
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4. ZDT1. 
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