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Abstract

We propose to derive assessments of outcomes to Multiple Criteria Decision
Making problems, instead of just outcomes, and carry decision making processes
with the former. In contrast to earlier works in that direction, which to calculate
assessments have made use of subsets of the efficient set (shells), here we provide
formulas for calculations of assessments based on the use of upper and lower approxi-
mations (upper and lower shells) of the efficient set, derived by evolutionary optimi-
zation. Hence, by replacing shells, which are to be in general derived via optimization,
with pairs of upper and lower shells, the need of exact optimization methods can be
eliminated from Multiple Criteria Decision Making.
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Introduction

Decision making, whether in economic or socia domain, calls for multi
aspect deliberations. The field of Multiple Criteria Decision Making (where
“criteria’ stands for “aspects’) provides methodologies and supporting tools
to cope with decision problems.

For aclass of “complex” decision problems, where because of scale, bulk
of data, and/or intricate framing a formal model is requested, efficient variants,
and among them the most preferred variant (the decision), can be derived with
the help of exact optimization methods. Thisin turn requires that the model has
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to be tied to an exact optimization package, which certainly precludes popular,
lay and widespread use on Multiple Criteria Decision Making (MCDM)
methods.

In a quest for smpler MCDM tools than those offered by now, it was
proposed in Kaliszewski [3], [4] that the decision maker (DM) instead
of evaluating exact outcomes (i.e. vectors of variant criteria vaues) would
evaluate assessments of outcomes, provided with sufficient (and controlled)
accuracy. Once the most preferred outcome assessment is derived, the closest
(in asense) variant is determined.

For an efficient outcome (i.e. outcome of an efficient variant) assessment
calculations a subset of efficient variants (a shell) has to be known. As a shell
can be derived (by exact optimization methods) prior to starting the decision
process, replacing outcomes by their assessment relives MCDM from a direct
dependence on exact optimization methods and packages.

In Miroforidis [7] it has been recently proposed to replace shells
by somewhat weaker constructs, namely lower shells and upper shells and
formulas for assessments of weakly efficient outcomes (i.e. outcomes of weakly
efficient variants) have been derived. As lower and upper shells can be derived
by evolutionary optimization, replacing shells by pairs of lower and upper shells
leads to replacement of exact optimization methods (required to derive shells)
by their evolutionary (bona fide heuristic) counterparts. This, in consequence,
eliminates from MCDM the need of exact optimization methods and packages
completely.

In this paper, on the base of the concept of lower and upper shells, we
derive formulas for assessments of properly efficient outcomes (i.e. outcomes
of properly efficient variants). These bounds subsume as a special case
formulas derived in Miroforidis[7].

The outline of the paper is as follows. In Section 1 we provide basic
definitions and notation. In Section 2 we derive formulas for assessments
of properly efficient outcomes using lower and upper shells. Final Section
concludes.

1. Definitions and notation

Let x denote a (decision) variant, & avariant space, X, aset of feasible
variants, X, < 2 . Then the underlying model for MCDM is formulated as:

“max” f(x)
xeX,cX, (1)
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where f: ¥ >R, f=(f,f.), f,:X >R, are objective (criteria)
functions, i =1,...,k, k> 2; “max” denotes the operator of deriving all efficient
variantsin X, according to the definition of efficiency given below.

In MCDM to compare feasible variants x one makes use of their
outcomes f(x). Relations between outcomes in outcome space R* induce

relations between variants in variant space 4 .
Below we make use of the following notation: y = f'(x).

Element 7 of 7, T c %, is:
— efficientin T ,if t,>t,,i=1...,k,teT,impliest=t¢,
— weakly efficientin T ,if thereisno teT ,suchthat ¢, >¢,, i =1,....k,

— properly efficient in T [1], if it is efficient and there exists a finite number
M > 0 such that for each i we have

t, —t <M

=t

for some j suchthat ¢, <z, whenever teT and ¢, > ¢,.

Variant x e Ac & is caled efficient (weakly efficient, properly efficient)
in 4 if y=f(x) is efficient (weakly efficient, properly efficient) in f(4) .
We denote the set of efficient variantsof X, by N .
Wedefineon & the dominance relation -,

X'=x< f(x")>> f(x),

where >> denotes f;(x') > f;(x), i=1...,k, and f;(x') > f;(x) for at least
one i. If x'>x,then we say that x isdominated by x' and x' is dominating

X.

The following definitions of lower and upper shells come from [7].
Lower shell is afinite nonempty set S, < X, elements of which satisfy

VxeSLﬁHX.ESLx%x. 2
By condition (2) al elements of shell S, areefficientin S, .
For agiven lower shell S, we define nadir point y" (S,) as

(S, =min £, (x), =Lk
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Upper shell is a finite nonempty set S, < 2\ X, elements of which
satisfy”

vXGSU _EIXIESUX = (3)
vXESU_‘HX'EN x'>_x1 (4)
vxeSU fz(x) >yinGd (SL)' l:l,,k . (5)

Below we make use of a selected element of outcome space 2, denoted
y", defined as
Vi =Fite, i=Luk,
where ¢ is any positive number and j is the wutopian element of R*,

caculated as
yi= max y,,i=1..k,

vef(Xo)uf(Su)
and we assume that all these maxima exist.
We assume that all efficient outcomes are p -properly efficient, i.e. they
can be derived by solving the optimization problem

min max A.((v; —y,)+pe* (v =),
min max 4 ((v; =yi)+pe (v =) (6)

where 4, >0, i=1....,k,and p >0 (cf. eq. [8], [6], [2], [4]).
By condition (3) al elements of upper shell S, are efficient in S, .
We also assume that they al are p -properly efficient in S, i.e. they can be
derived by solving the optimization problem
min max 4, ((v; - ;) +pe* (v" =), 7)

vef(sy) !

where 4, >0, i=1...,k, and p>0 has the same value as for p-properly
efficient outcomes (elements of f'(X,)) defined above.

“In [7] condition (5) has the form f(x)>> y™(s,) - We have had to strengthen this condition to deal
with proper efficiency in formula (11) below [5].
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2. Parametric bounds on outcomes

An outcome which is not derived explicitly (i.e. it is not an explicit
outcome) but is only designated by selecting vector A for the purpose to solve
the optimization problem (6), is called an implicit outcome.

We use lower and upper shells of N to calculate parametric bounds
on implicit outcomes, with weights 4 as parameters.

We are aiming at the following. Suppose vector of weights 4 is given.
Let y(4) denote an implicit properly efficient outcome of f(X,), which
would be derived if optimization problem (6) were solved with that 1.
Let L(y(1)) and U(y(4)) be vectors of lower and upper bounds on com-
ponents of y(A1), respectively. These bounds form an assessment [y(1)]

of y(4),
(D] ={L(¥(4)), U(»(2))} .
To simplify notation we put L(y(4)) = L(4) and U(y(1)) =U(4) .

To calculate bounds (assessments) one needs to know a pair of lower and
upper shells. As can be seen below, computational costs to calculate such
bounds are negligible as compared to derivation of efficient outcomes by exact
optimization methods.

Formulas we show may at the first glance look complicated, but in fact
they consist of no more than operations of adding and taking maxima over finite
sets of numbers.

Proofs of formulas can be found in [5].
Let Z and U, besuch that for each y € f(X,) thefollowing holds

L<y.<U,, i=1..,k. (8)

2.1. Lower Bounds

Below we give a formula to caculate lower bounds on outcome
components. For a given vector of weights 4, 4, >0, i=1...,k, let y(4)

be an implicit properly efficient outcome, which would be derived if optimi-
zation problem (6) were solved with that 4.
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For agiven lower shell S, thelower bounding formulais
i(A) = L(S,,4)

max{y; — (4 1+ p)) " max, (s, [max; 2,((v; - »,) ©)
+pe"(y*—y))]+ﬁz;(y;—U_,(ﬂ)).z}, i=Lk,

where U (1) ae such that y,<U;(4), j=1...k, j#i. One possible
selection of U,(4) is Uj, j=1...,k, j#i,where (71 is defined by (8). Here
we extend notation L(A) to L(S,,A) to stress dependence of lower bounds

on lower shells S, .
Putting o =0 in (9) we get the lower bounding formula for weakly

efficient outcomes, derived in [7].

2.2. Upper Bounds

Below we give a formula to calculate upper bounds on outcome
components. For a given vector of weights 4, 4, >0, i=1...,k, let y(1) be,

as previoudly, an implicit properly efficient outcome, which would be derived
if optimization problem (6) were solved with that 4.
Suppose that an upper shell S;, is given. To calculate upper bounds

on components of efficient outcomes, for each element y of f(S,) we have
to know vector A, 4 >0, i=1,...,k, such that y solves optimization problem
(6) on f(S,) forthat 1. To stress the association between A and y we denote
A=A(y).

It is easy to show that any p-properly efficient element y of f(Sy,)
solves optimization problem (6) on £(S,) with A= A(y), where

L) = (v =3)+pe (V=N i=L. k. (10)
Indeed, for A.(y), i =1...k , we clearly have, by the definition of y",

4()>0,
and
LN, =7) +pef (v =) =1.



MULTIPLE CRITERIA DECISION MAKING... 119

Since all elements of S,, are p -properly efficientin S, y isasolution
of optimization problem (7) for some 4, >0, i=1....k,i.eforal yeS,
mlaxﬂl.((yf —y)+pet (v -y)2 mlaxfli((y; ~¥)+pe (v =),
Hence, for some
2, =y )+ pe" =N 22, —7,) + et (V= P)),
and
() —y)+pe (v =02 (v =7,))+pe" (v =)
Thus,
LN =y +pet (V7 =2 2,000 -7+ pe' (7 =)
In consequence, for each y € S, we have
m;axZ,.(y)((yj —y)+pet(y -y) 2 mlaXZ(?)((yf ~7)+pet (v =) =1
Hence, y isasolution of (6) on f(S;,) with z:Z,.(y).
For agiven upper shell S,, the upper bounding formulais

y:(A) SU(Sy,4)

LZ]L,y} 4@+ p)? (11)

min{ mi nj}ef(sU)[minleI(l){yl + 14 p

__P N o
1+pZ LGWYUY, i=Lk,

ji

where (1) is a subset of indices {12,..,k} such tha [el(A)
if ¢/ =min{¢*,..."}, where
1=z, + pe )L,
ris defined by formula
=y -y, (12)

and L;(4) aresuchthat y,(1)>L;(4), =1...,k, j#[.One possible selection
of L;(1) is L,, j=1...k, j#i, where L; isdefined by (8). Here we extend
notation U(4) to U(S,,A) to stress dependence of lower bounds on upper
shells S, .

Putting p=0 in (11) we get the upper bounding formula for weakly
efficient outcomes, derived in [7].
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Concluding remarks and directions
for further research

The obvious advantage of replacing shells, which are to be derived
by solving optimization problems, with their lower and upper counterparts S,
and S, , which can be derived, asin [7], by evolutionary computations, would
be complete elimination of exact optimization from MCDM.

The open question is the quality (tightness) of assessments when
S, @ N, S, ¢ N. This question imposes itself on the same question with
respect to assessments derived with S, =S, < N, addressed in Kaliszewski [3],
[4]. However, if S, and S;, derived by evolutionary computations are “close”
to N there should be no significant deterioration in the quality of assessments.
Indeed, preliminary experiments with some test problems reported in [7],
confirm such expectations

To make condition (4) of the definition of upper shells operational one
has to replace N by S, , for obviousy N isnot known (for details cf. [7]),

but with such a replacement formulas (9) and (11) remain valid (though
in principle they become weaker).

References

[1] Geoffrion A.M.: Proper Efficiency in Vector Optimization. J. Appl. Math. Andl.,
1968, 22, pp. 618-630.

[2] Ehrgott M.: Multicriteria Optimization. Springer, 2005.

[3] Kaliszewski |.: Out of the Mist — Towards Decision-maker-friendly Multiple Cri-
teria Decision Making Support. Eur. J. Oper. Res., 2004, 158, pp. 293-307.

[4] Kaliszewski |.: Soft Computing for Complex Multiple Criteria Decision Making.
Springer, 2006.

[5] Kaliszewski I.: Multiple Criteria Decision Making: Outcome Assessments with
Lower and Upper Shells. Systems Research Institute Report, RB/9/2008.

[6] Miettinen K.M.: Nonlinear Multiobjective Optimization. Kluwer, Boston 1999.

[7] Miroforidis J.: Decision Making Aid for Operational Management of Department
Stores with Multiple Criteria Optimization and Soft Computing. PhD Thesis,
Systems Research Institute, Warsaw, 2010.

[8] Wierzbicki A.P.: Reference Point Approaches. \n. Multicriteria Decision Making
— Advances. In. MCDM: Models, Algorithms, Theory and Applications. Eds.
T. Gal, Th. Stewart, Th. Hanne. Kluwer 1999.



