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Abstract 
We propose to derive assessments of outcomes to Multiple Criteria Decision 

Making problems, instead of just outcomes, and carry decision making processes  
with the former. In contrast to earlier works in that direction, which to calculate 
assessments have made use of subsets of the efficient set (shells), here we provide 
formulas for calculations of assessments based on the use of upper and lower approxi-
mations (upper and lower shells) of the efficient set, derived by evolutionary optimi-
zation. Hence, by replacing shells, which are to be in general derived via optimization, 
with pairs of upper and lower shells, the need of exact optimization methods can be 
eliminated from Multiple Criteria Decision Making. 
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Introduction 

Decision making, whether in economic or social domain, calls for multi 
aspect deliberations. The field of Multiple Criteria Decision Making (where 
“criteria” stands for “aspects”) provides methodologies and supporting tools  
to cope with decision problems.  

For a class of “complex” decision problems, where because of scale, bulk 
of data, and/or intricate framing a formal model is requested, efficient variants, 
and among them the most preferred variant (the decision), can be derived with 
the help of exact optimization methods. This in turn requires that the model  has 
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to be tied to an exact optimization package, which certainly precludes popular, 
lay and widespread use on Multiple Criteria Decision Making (MCDM) 
methods. 

In a quest for simpler MCDM tools than those offered by now, it was 
proposed in Kaliszewski [3], [4] that the decision maker (DM) instead  
of evaluating exact outcomes (i.e. vectors of variant criteria values) would 
evaluate assessments of outcomes, provided with sufficient (and controlled) 
accuracy. Once the most preferred outcome assessment is derived, the closest 
(in a sense) variant is determined. 

For an efficient outcome (i.e. outcome of an efficient variant) assessment 
calculations a subset of efficient variants (a shell) has to be known. As a shell 
can be derived (by exact optimization methods) prior to starting the decision 
process, replacing outcomes by their assessment relives MCDM from a direct 
dependence on exact optimization methods and packages. 

In Miroforidis [7] it has been recently proposed to replace shells  
by somewhat weaker constructs, namely lower shells and upper shells and 
formulas for assessments of weakly efficient outcomes (i.e. outcomes of weakly 
efficient variants) have been derived. As lower and upper shells can be derived 
by evolutionary optimization, replacing shells by pairs of lower and upper shells 
leads to replacement of exact optimization methods (required to derive shells) 
by their evolutionary (bona fide heuristic) counterparts. This, in consequence, 
eliminates from MCDM the need of exact optimization methods and packages 
completely. 

In this paper, on the base of the concept of lower and upper shells, we 
derive formulas for assessments of properly efficient outcomes (i.e. outcomes  
of properly efficient variants). These bounds subsume as a special case 
formulas derived in Miroforidis [7]. 

The outline of the paper is as follows. In Section 1 we provide basic 
definitions and notation. In Section 2 we derive formulas for assessments  
of properly efficient outcomes using lower and upper shells. Final Section 
concludes. 

1. Definitions and notation 

Let x denote a (decision) variant, X  a variant space, 0X  a set of feasible 
variants, X⊆0X . Then the underlying model for MCDM is formulated as: 

“max” f (x) 
X⊆∈ 0Xx , (1)
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where kf RX →: , ),...,( 1 kfff = , RXfi →: , are objective (criteria) 
functions, ki ,...,1= , 2≥k ; “max” denotes the operator of deriving all efficient 
variants in 0X  according to the definition of efficiency given below. 

In MCDM to compare feasible variants x one makes use of their 
outcomes )(xf . Relations between outcomes in outcome space kR  induce 
relations between variants in variant space X . 

Below we make use of the following notation: ).(xfy =  

Element t  of kR⊆TT , , is: 
− efficient in T , if ii tt ≥ , ki ,...,1= , Tt ∈ , implies tt = , 
− weakly efficient in T  , if there is no Tt ∈ , such that ii tt > , ki ,...,1= , 
− properly efficient in T  [1], if it is efficient and there exists a finite number 

0>M  such that for each i  we have 

M
tt
tt

jj

ii ≤
−
−

 

for some j  such that jj tt < , whenever Tt ∈  and ii tt > . 
Variant X⊆∈ Ax  is called efficient (weakly efficient, properly efficient) 

in A  if )(xfy =  is efficient (weakly efficient, properly efficient) in )(Af .  
We denote the set of efficient variants of 0X  by N .  
We define on X  the dominance relation f , 

)()'(' xfxfxx >>⇔f , 

where >>  denotes kixfxf ii ,...,1),()'( =≥ , and )()'( xfxf ii >  for at least  
one i .  If xx f' , then we say that x  is dominated by 'x  and 'x  is dominating 
x . 

The following definitions of lower and upper shells come from [7]. 
Lower shell is a finite nonempty set 0XS L ⊆ , elements of which satisfy 

xx
LL SxSx f''∈∈ ¬∃∀ . (2)

By condition (2) all elements of shell LS  are efficient in LS . 
For a given lower shell LS  we define nadir point )( L

nad Sy  as 

kixfSy iSxL
nad
i

L

,...,1),(min)( ==
∈

. 



Ignacy Kaliszewski, Janusz Miroforidis 116 

Upper shell is a finite nonempty set 0\ XSU X⊆ , elements of which 
satisfy* 

'' xx
UU SxSx f∈∈ ¬∃∀ , (3)

xxNxSx U
f''∈∈ ¬∃∀ , (4)

kiSyxf L
nad
iiSx U

,...,1),()( =>∀ ∈ . (5)

Below we make use of a selected element of outcome space kR , denoted 
*y , defined as 

kiyy ii ,...,1,ˆ* =+= ε , 

where ε  is any positive number and ŷ  is the utopian element of kR , 
calculated as 

kiyy ii
USfXfy

,...,1,maxˆ
)()0(

==
∪∈

, 

and we assume that all these maxima exist. 
We assume that all efficient outcomes are ρ -properly efficient, i.e. they 

can be derived by solving the optimization problem 

))()((maxmin **

)( 0

yyeyy k
iiiiXfy

−+−
∈

ρλ , (6)

where kii ,...,1,0 =>λ , and 0>ρ  (cf. e.g. [8], [6], [2], [4]). 
By condition (3) all elements of upper shell US  are efficient in US .  

We also assume that they all are ρ -properly efficient in US , i.e. they can be 
derived by solving the optimization problem 

))()((maxmin **

)(

yyeyy k
iiiiUSfy

−+−
∈

ρλ , (7)

where kii ,...,1,0 =>λ , and 0>ρ  has the same value as for ρ -properly 
efficient outcomes (elements of ))( 0Xf  defined above. 
 

                                                      
* In [7] condition (5) has the form )()( L

nad Syxf >> . We have had to strengthen this condition to deal 
with proper efficiency in formula (11) below [5]. 
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2. Parametric bounds on outcomes 

An outcome which is not derived explicitly (i.e. it is not an explicit 
outcome) but is only designated by selecting vector λ  for the purpose to solve 
the optimization problem (6), is called an implicit outcome. 

We use lower and upper shells of N to calculate parametric bounds  
on implicit outcomes, with weights λ  as parameters. 

We are aiming at the following. Suppose vector of weights λ  is given. 
Let )(λy  denote an implicit properly efficient outcome of )( 0Xf , which 
would be derived if optimization problem (6) were solved with that λ .  
Let ))(( λyL  and ))(( λyU  be vectors of lower and upper bounds on com-
ponents of )(λy , respectively. These bounds form an assessment )]([ λy   
of )(λy , 

))}(()),(({)]([ λλλ yUyLy = . 

To simplify notation we put )())(( λλ LyL =  and )())(( λλ UyU = . 
To calculate bounds (assessments) one needs to know a pair of lower and 

upper shells. As can be seen below, computational costs to calculate such 
bounds are negligible as compared to derivation of efficient outcomes by exact 
optimization methods. 

Formulas we show may at the first glance look complicated, but in fact 
they consist of no more than operations of adding and taking maxima over finite 
sets of numbers. 

Proofs of formulas can be found in [5]. 
Let iL  and iU  be such that for each )( 0Xfy ∈  the following holds 

kiUyL iii ,...,1, =≤≤ . (8)

2.1. Lower Bounds 

Below we give a formula to calculate lower bounds on outcome 
components. For a given vector of weights λ , kii ,...,1,0 =>λ , let )(λy   
be an implicit properly efficient outcome, which would be derived if optimi-
zation problem (6) were solved with that λ . 
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For a given lower shell LS  the lower bounding formula is 

),()( λλ Lii SLy ≥   

)(([maxmax))1((max{ *
)(

1*
jjjjSfyii yyy

L
−+− ∈

− λρλ  (9)

kiLUyyye ijj
k

ij
k ,...,1},)),((

1
))]( ** =−

+
+−+ ∑ ≠

λ
ρ

ρρ , 

where )(λjU  are such that ijkjUy jj ≠=≤ ,,...,1),(λ . One possible 

selection of )(λjU  is ijkjU j ≠= ,,...,1, , where jU  is defined by (8). Here 

we extend notation )(λL  to ),( λLSL  to stress dependence of lower bounds  
on lower shells LS . 

Putting 0=ρ  in (9) we get the lower bounding formula for weakly 
efficient outcomes, derived in [7]. 

2.2. Upper Bounds 

Below we give a formula to calculate upper bounds on outcome 
components. For a given vector of weights λ , kii ,...,1,0 =>λ , let )(λy  be,  
as previously, an implicit properly efficient outcome, which would be derived  
if optimization problem (6) were solved with that λ . 

Suppose that an upper shell US  is given. To calculate upper bounds  
on components of efficient outcomes, for each element y  of )( USf  we have  
to know vector λ , kii ,...,1,0 =>λ , such that y  solves optimization problem 
(6) on )( USf  for that λ . To stress the association between λ  and y  we denote 

)(yλλ = . 
It is easy to show that any ρ -properly efficient element y  of )( USf  

solves optimization problem (6) on )( USf  with )(yλλ = , where 

kiyyeyyy k
iii ,...,1,))()(()( 1** =−+−= −ρλ . (10)

Indeed, for kiyi ,...,1),( =λ , we clearly have, by the definition of *y , 

0)( >yiλ , 
and 

1))())((( ** =−+− yyeyyy k
iii ρλ . 
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Since all elements of US  are ρ -properly efficient in US , y  is a solution  
of optimization problem (7) for some kii ,...,1,0 =>λ , i.e. for all USy ∈  

))()((max))()((max **** yyeyyyyeyy k
iiii

k
iiii

−+−≥−+− ρλρλ . 

Hence, for some j  

))()(())()(( **** yyeyyyyeyy k
jjj

k
jij −+−≥−+− ρλρλ , 

and 
)()()()( **** yyeyyyyeyy k

jj
k

jj −+−≥−+− ρρ . 
Thus, 

))())((())())((( **** yyeyyyyyeyyy k
jjj

k
jjj −+−≥−+− ρλρλ  

In consequence, for each USy ∈  we have 

))())(((max ** yyeyyy k
iiii

−+− ρλ .1))())(((max ** =−+−≥ yyeyyy k
iiii

ρλ  

Hence, y  is a solution of (6) on )( USf  with )(yiλλ = . 
For a given upper shell US  the upper bounding formula is 

),()( λλ Uii SUy ≤   

11**
)()( )1()(

1
{[minmin{min −−

≠∈∈ +−
+

+ ∑ ρλ
ρ

ρ
λ yyy l

k
lj jlIlsfy U

 (11)

kiUL i
k

ij j ,...,1},}]},)(
1

=
+
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λ

ρ
ρ , 

where )(λI  is a subset of indices },...,2,1{ k  such that )(λIl ∈   

if },...,min{ 1 kl ttt = , where 
1))()(( −+= yet i

k
i

i λτρτ , 

τ is defined by formula 
yy −= *τ , (12)

and )(λjL  are such that ljkLy jj ≠=≥ ,,...,1),()( λλ . One possible selection 

of )(λjL  is ijkjLj ≠= ,,...,1, , where jL  is defined by (8). Here we extend 

notation )(λU  to ),( λUSU  to stress dependence of lower bounds on upper 
shells US . 

Putting 0=ρ  in (11) we get the upper bounding formula for weakly 
efficient outcomes, derived in [7]. 
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Concluding remarks and directions  
for further research 

The obvious advantage of replacing shells, which are to be derived  
by solving optimization problems, with their lower and upper counterparts LS   
and US , which can be derived, as in [7], by evolutionary computations, would 
be complete elimination of exact optimization from MCDM. 

The open question is the quality (tightness) of assessments when 
NSNS UL ⊄⊄ , . This question imposes itself on the same question with 

respect to assessments derived with NSS UL ⊂= , addressed in Kaliszewski [3], 
[4]. However, if LS  and US  derived by evolutionary computations are “close” 
to N  there should be no significant deterioration in the quality of assessments. 
Indeed, preliminary experiments with some test problems reported in [7], 
confirm such expectations. 

To make condition (4) of the definition of upper shells operational one 
has to replace N  by LS , for obviously N  is not known (for details cf. [7]), 
but with such a replacement formulas (9) and (11) remain valid (though  
in principle they become weaker). 
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