
 
Petr Fiala 

AN ANP-BASED FRAMEWORK FOR REVENUE 
MANAGEMENT 

Abstract 

Revenue management (RM) is the process of understanding, anticipating  
and influencing consumer behavior in order to maximize revenue. The challenge is to 
sell the right resources to the right customer at the right time for the right price through 
the right channel. Network revenue management models attempt to maximize revenue 
when customers buy bundles of multiple resources. An Analytic Network Process 
(ANP)-based framework for RM problems structuring and combining specific methods 
is presented. RM addresses three basic categories of demand-management decisions: 
price, quantity, and structural decisions. Specific models are used to model and to solve 
basic RM decisions. Combinations of the solutions are given by sub-networks  
in an ANP model. 
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Introduction 

Revenue management (RM) is the process of understanding, anticipating 
and influencing consumer behavior in order to maximize revenue or profits 
from fixed, perishable resources. The RM area encompasses all work related  
to operational pricing and demand management. This includes traditional 
problems in the field, such as capacity allocation, overbooking and dynamic 
pricing, as well as newer areas, such as oligopoly models, negotiated pricing 
and auctions. Recent years have seen great successes of revenue management, 
notably in the airline, hotel, and car rental business. Currently, an increasing 
number of industries is exploring possibilities of adopting similar concepts  
[see Talluri, van Ryzin, 2004]. What is new about RM is not the demand- 
-management decisions themselves but rather how these decisions are made.  
The true innovation of RM lies in the method of decision making. 
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Revenue Management is to sell the right product, to the right customer  
at the right time, for the right price through the right channel by maximizing 
revenue. RM is the art and science of predicting real-time customer demand  
and optimizing the price and availability of products according to the demand. 
RM addresses three basic categories of demand-management decisions:  
– structural,  
– price, and  
– quantity decisions.  

Network revenue management models attempt to maximize revenue 
when customers buy bundles of multiple resources. The dependence among  
the resources in such cases is created by customer demand. 

For the basic specific problems many appropriate methods have been 
proposed [see Talluri, van Ryzin, 2004]. An Analytic Network Process  
(ANP)-based framework for RM problems structuring and combining specific 
methods is presented in this paper. Combinations of the solutions are given  
by subnetworks in an ANP model. RM problems are complex dynamic 
problems. The DNP (Dynamic Network Process) method was used for dynamic 
extensions. 

1. ANP structure of the problem 

The Analytic Hierarchy Process (AHP) is the method for setting priorities 
[Saaty, 1996]. A priority scale based on reference is the AHP way to 
standardize non-unique scales in order to combine multiple performance 
measures. The AHP derives ratio scale priorities by making paired comparisons 
of elements on a common hierarchy level by using a 1 to 9 scale of absolute 
numbers. The absolute number from the scale is an approximation to the ratio 
wj / wk and then it is possible to derive values of wj and wk as weights, i.e. 
measures of relative importance. The AHP method uses the general model  
for synthesis of the performance measures in the hierarchical structure: 
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where ui are global weights of alternatives, vj are weights of criteria, and wji  
are weights of alternatives by individual criteria. 
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The Analytic Network Process (ANP) is the method [Saaty, 2001] that 
makes it possible to deal systematically with all kinds of dependence  
and feedback in the performance system. The well-known AHP theory  
is a special case of the Analytic Network Process that can be very useful  
for incorporating linkages in the system.  

The structure of the ANP model is described by clusters of elements 
connected by their dependence on one another. A cluster groups elements  
that share a set of attributes. At least one element in each of these clusters  
is connected to some element in another cluster. These connections indicate  
the flow of influence between the elements.  

The challenge in RM is to sell: 
– the right resources,  
– to the right customer,  
– at the right time,  
– for the right price,  
– through the right channel.  

There are two possibilities for a decision: to accept or to reject a request  
for a product. The clusters in an RM problem can consist of resources, 
customers, time, prices, channels, and decisions (see Figure 1). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Clusters and connections in an RM problem 
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Pairwise comparisons are inputs for preference elicitation in revenue 
problems. A supermatrix is a matrix of all elements by all elements.  
The weights from the pairwise comparisons are placed in the appropriate 
column of the supermatrix. The sum of each column corresponds to the number  
of comparison sets. The weights in the column corresponding to the cluster  
are multiplied by the weight of the cluster. Each column of the weighted 
supermatrix sums to one and the matrix is column stochastic. Its powers can 
stabilize after some iterations to a limited supermatrix. The columns of each 
block of the matrix are identical in many cases, though not always, and we can 
read off them the global priority of units. 

2. Sub-networks 

The basic ANP model is completed by specific sub-networks. The sub- 
-networks are used to model important features of the RM problems. The most 
important features in our ANP-based framework for revenue management  
are captured in sub-networks: 
– time dependent resources,  
– products, 
– network revenue management, 
– price-quantity-structure network. 

Time dependent resources  

A specific sub-network models time-dependent amounts of resources. 
The time-dependent amount of resources is given by previous decisions.  
The sub-network connects clusters: time, resources and decisions. 

Products 

A product is a sub-collection of available resources. An (m, n) matrix 
A = [aij] is defined such that aij represents the amount of resource i used  
to produce one unit of product j. Every column j of A represents a different 
product and the collection M = {A.1, … , A.n} is the menu of products offered  
by the seller. 

Network revenue management  

The quantity-based revenue management of multiple resources is referred 
to as network revenue management. This class of problems arises for example 
in airline, hotel, and railway management. In the airline case, the problem 
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consists in managing capacities of a set of connecting flights across a network,  
a so called hub-and-spoke network (see Figure 2). In the hotel case, the problem 
is managing room capacity on consecutive days when customers stay multiple 
nights. 

 
 
 
 
 
 
 
 
 
 
Figure 2. Hub-and-spoke network 

 
Network revenue management models attempt to maximize some reward 

function when customers buy bundles of multiple resources. The Inter-
dependence of resources, commonly referred to as network effects, creates 
difficulties in solving the problem. The classical technique of approaching this 
problem has been to use a deterministic LP solution to derive policies for the 
network capacity problem. Initial success with this method has triggered 
considerable research on possible reformulations and extensions, and this 
method has become widely used in many industrial applications. A significant 
limitation of the applicability of these classical models is the assumption  
of independent demand. In response to this, interest has arisen in recent years  
to incorporate customer choice into these models, further increasing their 
complexity. This development drives current efforts to design powerful  
and practical heuristics that still can manage problems of practical scope. 

The basic model of the network revenue management problem can be 
formulated as follows [see Talluri, van Ryzin, 2004]: The network has m 
resources which can be used to provide n products. We define the incidence 
matrix A = [aij], i = 1, 2, … , m, j = 1, 2, … , n, where 

aij = 1, if resource i is used by product j, and  
aij = 0, otherwise.  

The j-th column of A, denoted aj, is the incidence vector for product j.  
The notation i aj indicates that resource i is used by product j. 

The state of the network is described by a vector x = (x1, x2, … , xm) of resource 
capacities. If product j is sold, the state of the network changes to x − aj.  
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Time is discrete, there are T periods and the index t represents the current time, 
t = 1, 2, … , T. We assume that within each time period t at most one request  
for a product can arrive.  

Price-quantity-structure network 

RM addresses three basic categories of demand-management decisions: 
1. Price decisions:  

– How to set posted prices. 
– How to price across product categories. 
– How to price over time. 
– How to markdown over the product lifetime.  

2. Quantity decisions: 
– Whether to accept or reject an offer to buy. 
– How to allocate output or capacity to different segments, products  

and channels. 
– When to withhold a product from market and sale it at later points  

in time.  
3. Structural decisions:  

– How to bundle products.  
– Which selling format to use. 
– Which segmentation or differentiation mechanisms to use. 
– Which terms of trade to offer. 

The price-quantity-structure network is given by interdependences of the 
three very important factors. The solutions of three basic categories of demand- 
-management decisions are solved by basic methods described in next 
paragraphs. Interdependencies are modeled and analyzed in the ANP sub- 
-network.  

3. Price decisions 

The basic pricing model of the network revenue management problem  
is formulated as a stochastic dynamic programming problem whose exact 
solution is computationally intractable. Most approximation methods are based 
on one of two basic approaches: to use a simplified network model or to 
decompose the network problem into a collection of single-resource problems. 
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The Deterministic Linear Programming (DLP) method is a popular one  
in practice. The DLP method is based on a wrong assumption that demand  
is deterministic and static. Approximation methods based on extensions  
of the basic approaches are proposed. 

The revenue management general model [Bitran, Caldentey, 2003] 
provides a global view of the different elements and their interrelations: 
– Supply. 
– Product. 
– Information. 
– Demand. 

A seller has a fixed amount of initial capacity that is used to satisfy  
a price-sensitive demand during a certain selling period [0, T]. This initial 
capacity is modeled by an m-dimensional vector of m resources. Capacity can 
be interpreted for example as rooms in a hotel, available seats for a specific 
origin-destination flight on a given day, etc. Capacity is essentially given and 
the seller is committed exclusively to finding the best way to sell it. From  
a pricing perspective, two important attributes of the available capacity are its 
degree of flexibility and its perishability. Flexibility measures the ability  
to produce and offer different products using the initial capacity C0. 
Perishability relates to the lack of ability to preserve capacity over time. As time 
progresses and resources are consumed, capacity decreases. The available 
capacity at time t is denoted by Ct = (c1(t), … , cm(t)). 

The knowledge of the system and its evolution over time is crucial to any 
dynamic pricing policy. Given an initial capacity C0, a product menu M,  
and a demand and price processes, the observed history Ht of the selling process  
is defined as the set of all relevant information available up to t. This history 
should include at least the observed demand process and available capacity,  
and it can also include some additional information such as demand forecasts. 

The set of potential customers is divided into different segments, each 
one having its own set of attributes. A d-dimensional stochastic process  
is defined as N(t, Ht) = (N1(t, Ht), … , Nd(t, Ht)) where Nj(t, Ht) is the cumulative 
potential demand up to time t from segment j given the available information 
Ht. An (n, d) matrix B(P) = [bij] is defined where bij represents the units  
of product i ∈ M requested by a customer in segment j = 1, … , d. The demand 
depends on the pricing policy P = {pt, t ∈ [0, T]} where pt(i, Ht) is the price  
of product i ∈ M at time t given a current history Ht. The effective cumulative 
demand process in [0, t] at the product level is defined as the n-dimensional 
vector D(t, P, H) = B(P)N(t, Ht). The set of all admissible pricing policies, those 
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that satisfy all the relevant constraints, is denoted by Π. The seller has the 
ability to partially serve demand if it is profitable to do so. An n-dimensional 
vector S(t) that represents the cumulative sales up to time t is defined. 

The general revenue management problem is to find the solution  
to the following optimal control problem: 

⎥
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tdSpE
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subject to  
Ct   = C0 − AS(t) ≥ 0 for all t ∈ [0; T], 
0 ≤ S(t) ≤  D(t, P, Ht) for all t ∈ [0; T], 
P ∈ Π,  and S(t)∈ Ht. 

Deterministic models assume that the seller has perfect information about 
the demand process. They are easy to analyze and provide a good 
approximation for the more realistic yet complicated stochastic models. 
Deterministic solutions are in some cases asymptotically optimal for the 
stochastic demand problem [Cooper, 2002]. 

The simplest deterministic model considers the case of a monopolist 
selling a single product to a price sensitive demand during a period [0, T].  
The initial inventory is C0, demand is deterministic with time dependent  
and price sensitive intensity μ(p, t). The instantaneous revenue function 
r(p, t) = pμ(p, t) is assumed to be concave as in most real situations.  
The general revenue management problem can be written in this case  
as follows: 
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This is a standard problem in calculus of variations. The optimality condition  
is given by  
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where λ is the Lagrangian multiplier for the constraint¸ μp is the partial 
derivative of μ with respect to the price.  
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4. Quantity decisions 

Demand in time period t is modeled as the realization of a single random 
vector r(t) = (r1(t), r2(t), … , rn(t)). If rj(t) = rj > 0, this indicates that a request 
for product j occurred and that its associated revenue is rj. If rj(t) = 0,  
this indicates that no request for product j occurred. A realization r(t) = 0 (all 
components equal to zero) indicates that no request from any product occurred 
at time t. The assumption that at most one arrival occurs in each time period 
means that at most one component of r(t) can be positive. The sequence r(t), 
t = 1, 2, … , T, is assumed to be independent with known joint distributions  
in each time period t. When revenues associated with product j are fixed,  
we will denote these by rj and the revenue vector r = (r1, r2, … , rn). 

Given the current time t, the current remaining capacity x and the current 
request r(t), the decision is to accept or not to accept the current request.  
We define the decision vector u(t) = (u1(t), u2(t), … , un(t)) where 

uj(t)  = 1, if a request for product j in time period t is accepted, and  
uj(t)  = 0, otherwise.  

The components of the decision vector u(t) are functions of the remaining 
capacity components of vector x and the components of the revenue vector r,  
u(t) = u(t, x, r). The decision vector u(t) is restricted to the set  

U(x) = {u ∈{0, 1}n,  Au ≤ x }. 

The maximum expected revenue, given remaining capacity x in time period t,  
is denoted by Vt(x). Then Vt(x) must satisfy the Bellman equation: 

1( )
( ) max{ ( ) ( , , ) ( )}T

t tu U x
V x E r t u t x r V x Au+∈

⎡ ⎤= + −⎢ ⎥⎣ ⎦  (1)

with the boundary condition 

1 ( ) 0 , .TV x x+ = ∀  
A decision u* is optimal if and only if it satisfies: 

uj (t, x, rj) = 1, if  rj ≥ Vt+1(x) − Vt+1(x − aj),  aj ≤ x, 

uj (t, x, rj) = 0, otherwise.  

This reflects the intuitive notion that revenue rj for product j is accepted 
only when it exceeds the opportunity cost of the reduction in resource capacities 
required to satisfy the request. 
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Basic approximation approach  

The equation (1) cannot be solved exactly for most networks of realistic 
size. Solutions are based on approximations of various types. There are two 
important criteria when judging network approximation methods: accuracy  
and speed. Among the most useful information provided by an approximation 
method are estimates of bid prices [see Talluri, van Ryzin, 2004]. 

Given an approximation method M that yields an estimate of the value 
function ( )M

tV x we can approximate the displacement cost of accepting product 
j by gradient of the value function approximation. The bid prices are then 
defined by: 

( , ) ( )M M
í t

i

t x V x
x

π ∂
=
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We introduce Deterministic Linear Programming (DLP) method.  
The approach is to use a simplified network model, for example formulating  
the problem as a static mathematical program.  

The DLP method uses the approximation: 

( ) maxLP T
tV x r y=  (2)

subject to  

Ay  ≤  x 

0  ≤  y ≤ E[D] 

where D = (D1, D2, … , Dn) is the vector of demand over the periods t, 
t +1, … , T, for product j, j = 1, 2, … , n, and r = (r1, r2, … , rn)  
is the vector of revenues associated with the n products. The decision vector 
y = (y1, y2, … , yn) represents partitioned allocation of capacity for each of the n 
products. The approximation effectively treats demand as if it were 
deterministic and equal to its mean E[D].  

The optimal dual variables, πLP, associated with the constraints Ay ≤ x, 
are used as bid prices. The DLP was among the first models analyzed for 
network RM [see Talluri, van Ryzin, 2004]. The main advantage of the DLP 
model is that it is computationally very efficient to solve. Due to its simplicity 
and speed, it is a popular one in practice. The weakness of the DLP 
approximation is that it considers the mean demand only and ignores all other 
distributional information. The performance of the DLP method depends on the 
type of network, the order in which fare products arrive and the frequency of re-
optimization. 
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5. Structural decisions 

One of structural decisions is how to bundle products. We will show  
on this example how to use models of combinatorial auctions. Auctions  
are important market mechanisms for the allocation of goods and services. 
Combinatorial auctions are those auctions in which bidders can place bids  
on combinations of items, so called bundles. The advantage of combinatorial 
auctions is that the bidder can more adequately express his preferences. This is 
particularly important when items are complements. The auction designer also 
derives value from combinatorial auctions. Allowing bidders more adequately 
to express preferences often leads to improved economic efficiency and greater 
auction revenues. However, alongside their advantages, combinatorial auctions 
raise a host of questions and challenges [see Cramton et al. (eds.), 2006;  
de Vries and Vohra, 2003].  

The problem, called the winner determination problem, has received 
considerable attention in the literature. The problem is formulated as follows: 
Given a set of bids in a combinatorial auction, find an allocation of items  
to bidders that maximizes the seller's revenue. It introduced many important 
ideas, such as the mathematical programming formulation of the winner 
determination problem, the connection between the winner determination 
problem and the set-packing problem as well as the issue of complexity.  

Winner determination problem 

Many types of combinatorial auctions can be formulated as mathematical 
programming problems. From among different types of combinatorial auctions 
we present an auction of indivisible items with one seller and several buyers. 
Let us suppose that one seller offers a set G of m items, j = 1, 2, … , m,  
to n potential buyers. Items are available in single units. A bid made by buyer i,  
i = 1, 2, … , n, is defined as: 

Bi = {S, vi(S)}, 
where 

S ⊆ M, is a combination of items, 
vi(S),  is the valuation or offered price by buyer i for the combination of items S. 

The objective is to maximize the revenue of the seller given the bids 
made by buyers. The constraints ensure that no single item is allocated to more 
than one buyer and that no buyer obtains more than one combination.  
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Problem formulation 

Bivalent variables are introduced for model formulation: 
xi(S) is a bivalent variable specifying if the combination S is assigned to buyer  
i (xi(S) = 1).  

The winner determination problem can be formulated as follows: 

max)()(
1

→∑∑
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SxS i
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subject to: 

∑
⊆MS

xi(S)   ≦ 1,  ∀ i,  i = 1, 2, … , n,   

∑
=

n

i 1
∑
⊆MS

 xi(S)  ≦ 1,  ∀ j ∊ M, 

xi(S) ∊ {0, 1}, ∀  S  ⊆ M,  ∀ i,  i = 1, 2, … , n. 

The objective function expresses the revenue. The first constraint ensures 
that no bidder receives more than one combination of items. The second 
constraint ensures that overlapping sets of items are never assigned.  

6. Dynamic Network Process 

RM problems are complex dynamic problems. The ANP is static but  
for the RM problem, time dependent decision making is very important.  
The DNP (Dynamic Network Process) method was introduced [Saaty, 2003]. 
There are two ways to study dynamic decisions: structural, by including 
scenarios, and functional, by explicitly involving time in the judgment process. 
For the functional dynamics there are analytic or numerical solutions. The basic 
idea of the numerical approach is to obtain the time dependent principal 
eigenvector by simulation.  

The Dynamic Network Process seems to be an appropriate instrument  
for analyzing dynamic networks [Fiala, 2006]. The method is appropriate also  
for the specific features of RM problems. The method computes time dependent 
weights for decisions and combinations of decisions.  
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We used the ANP software package Super Decisions developed  
by Creative Decisions Foundation (CDF) for some experiments in testing  
the possibilities of the expression and evaluation of the dynamic RM models 
[see Figure 3].  

 

 
 
Figure 3. Super Decisions − RM model 
 

Conclusions 

RM problems are important subjects of intensive economic research.  
A possible flexible ANP/DNP framework is presented. Analytic Network 
Process methodology is useful for structuring the RM problem and for 
combining specific models. Sub-networks are used for sophisticated analyses  
of RM processes. Specific models are used to model and to solve basic RM 
decisions (price, quantity, structure). Approximations, heuristics, or iterative 
approaches are used for solving the specific models. Dynamic Network Process 
is an appropriate approach for explicitly involving time in the RM processes. 
The combination of such approaches can give more complex views on RM 
problem. 
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