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Abstract 

The implementation of most multi-criteria decision aid methods requires fixing  
of certain parameters in order to model the decision-maker's preferences. The fixing  
of these parameter values must be naturally done with the decision-maker’s 
collaboration. The parameter determination constitutes an important task, which  
is generally quite delicate and difficult to accomplish, for the decision-maker. In fact,  
the information provided at this level is inevitably subjective and partial. In this paper, 
we intend to determine the values of the indifference thresholds associated to usual  
and quasi criterion in PROMETHEE, by exploiting the information provided by  
the decision-maker and by using mathematical programming. 
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Introduction 

At the time of a multi-criteria decision aid activity, the basic 
preoccupation concerns the manner in which the decision will be taken in  
a given context. However, it can also be pertinent to pose the problem inversely: 
supposing that a decision has been taken, is it possible to find the rational bases 
allowing to explain or to justify the decision taken? Or is it possible to explain 
the decision-maker’s preference model which leads precisely to the same 
decision or at least to a very “similar” decision? The philosophy of the 
preference disaggregation approach in the framework of a multi-criteria analysis 
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is to determine preference modelling elements from preferential structures 
provided by the decision-maker, taking into account the method used for multi- 
-criteria aggregation. 

The implementation of PROMETHEE method requires fixing relative 
importance coefficients of the criteria, preference thresholds and indifference 
thresholds. In fact, we proposed an approach inferring relative importance 
coefficients of the criteria from preference relations provided by the decision 
maker [Frikha et al., 2010].  

In this paper, we consider the problem of the preference disaggregation, 
inferring, from preference relations provided by the decision-maker, the 
indifference threshold values. We will focus our interest only on usual criteria 
and quasi-criteria. In a subsequent work, we intend to extend our results to  
the general case, with the other criteria’s functions, requiring preference  
and indifference thresholds simultaneously. The organization of the paper  
is as follows: a brief presentation of the disaggregation approaches constitutes 
section 2. Section 3 is dedicated to the description of the PROMETHEE 
method. In section 4, we will describe the model proposed to determine  
the indifference threshold values. This model, including an interactive aspect,  
is based on mathematical programming of the goal-programming type.  
A fictitious numerical example is the object of section 5 and finally Section 6 
contains a brief conclusion.   

1. Preference disaggregation methods 

Several disaggregation approaches have been developed to infer the 
ELECTRE method’s parameters. Indeed, a first trial of ELECTRE III parameter 
determination from a given ranking has been presented by Richard [1981] 
without eventually leading to satisfactory results. Then Kiss et al. [1994] 
developed an interactive system called ELECCALC that determines indirectly 
the ELECTRE II method’s parameters from decision-makers’ answers to 
questions concerning their global preferences. In the same context of preference 
disaggregation methods allowing to determine certain of ELECTRE parameters’ 
values on the basis of information provided by the decision-maker, Mousseau 
contributed to the development of several works. Indeed, Mousseau and 
Slowinski [1998] proposed a global inference approach that deduces ELECTRE 
TRI’s parameters simultaneously from assignment examples. Continuing  
the same idea, Mousseau et al. [2001] proposed a partial inference approach  
that consists in inferring only the criteria’s relative importance coefficients and  
the cut levels in  order  to  deduce  some  trivial  relations  from  valued  ranking 
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relations. Ngo The and Mousseau [2002] presented also an inference procedure 
that determines the limits of categories of ELECTRE TRI method from 
assignment examples provided by the decision-maker. Finally, Dias and 
Mousseau [2006] proposed a mathematical program to deduce the veto 
threshold values of ELECTRE III from ranking examples.   

In the same context of preference disaggregation, Jacquet-Lagreze [1979] 
had proposed an approach to construct an additive value model that consists  
in assessing indirectly the model’s parameters on the basis of preference holistic 
information. This approach is mathematically integrated in the UTA method  
by Jacquet-Lagrèze and Siskos [1982] through a disaggregation model  
of ordinal regression type, based on the formulation of linear programming.  
The preference disaggregation methods also appear in other versions of UTA. 
Indeed, the UTADIS method [Utilité Additive Discriminante] of Devaud et al. 
[1980] is an ordinal regression method based on the preference disaggregation 
approach. Given a predefined action ranking in classes, the objective  
of UTADIS is to estimate the additive utility function and utility thresholds that 
assign actions in their original classes with a minimum of ranking errors.  
The method UTA II, developed by Siskos [1980] is another version of the UTA 
method. This preference disaggregation approach is useful to assess the additive 
utility model.  Greco et al. [2008] developed the UTAGMS method, which 
allows the determination of all additive value functions compatible with the 
preference information provided by the decision maker [a set of pairwise 
comparisons on a subset of alternatives, called reference alternatives]. Besides, 
Figueira et al. [2009] developed the UTAGRIP allowing constructing a set  
of additive value functions compatible with preference information composed  
of comparisons of reference action pairs. Moreover, Bous et al. [2010] proposed 
a new method called ACUTA based on the computation of the analytic centre  
of a polyhedron, for the selection of additive value functions that are compatible 
with holistic assessments of preferences provided by the decision maker. In the 
same context of determining additive value functions, Köksalan and Özpeynirci 
[2009] developed an approach that estimates an additive utility function. In fact, 
the decision maker is invited to assign some reference alternatives into 
categories during the interactive process. Else, Greco et al. (2010) proposed  
a model that aims at assigning actions evaluated on multiple criteria to p pre-
defined and ordered classes. In this work, the decision maker supplies a set  
of assignment examples on a subset of actions, called reference actions.  
This information is used to determine a set of general additive value functions 
compatible with these assignment examples.   

In the framework of multi-criteria decision aid under uncertainty, Siskos 
[1983] developed a stochastic ordinal regression method from UTA (stochastic 
UTA).   
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The disaggregation approaches are also applicable in a specific multi- 
-objective optimization field, mainly in the field of the linear programming with 
multiple objective functions. For example, in the classic methods of Geoffrion 
et al. [1972] and Zionts and Wallenius [1976], the weights of the objective 
linear combinations are inferred locally from the judgments provided by the 
decision-maker at each iteration of these methods. Stewart [1987] proposed  
a procedure of action pruning using the UTA method, whereas Jacquet-Lagrèze  
et al. [1987] developed a method similar to UTA to estimate the utility function  
of multi-objective systems for the linear programming systems. Siskos and 
Despotis [1989] proposed an interactive method called ADELAIS that uses 
UTA in an iterative way in order to optimize an additive value function in the 
feasible region defined on the basis of satisfaction levels determined during 
each iteration. Tangian [2001] proposed a disaggregation technique to calculate 
quadratic multi-objective functions.  

2. The PROMETHEE method 

The PROMETHEE method (Preference Ranking Organization METHod 
for Enrichment Evaluation) [Brans and Vincke, 1985] is based on the principle 
of pairwise action comparison according to each criterion. It consists in defining 
a preference function Pk

ij, allowing the modeling of the decision-maker’s 
preferences with respect to each criterion k.  

When the decision-maker compares two alternatives xi and xj, Pk
ij 

represents the degree of preference for xi, considering only the criterion k.  
The preference function’s value varies between 0 and 1 and is defined 
separately for every criterion by: 
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Figure 1. The preference function for the usual-criterion 
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In this case, there is an indifference between xi and xj only if 
gk(xi) = gk(xj). As soon as these values are different, there is a strict preference 
for one of the alternatives. There is no parameter to determine.  

For the quasi-criterion: 

0    if       (Indifference)    

1    if       (Strict preference)

k
ij kk

ij k
ij k

d q
P

d q
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Figure 2. The preference function for the quasi-criterion  

 
In this case, there is an indifference between xi and xj as a long as the 

slack between gk(xi) and gk(xj) does not exceed the indifference threshold qk. 
Beyond this, the preference becomes strict. We find the usual-criterion if qk=0. 

To define the criteria preference function, it is necessary to determine  
the indifference threshold values (q). The indifference threshold (q) corresponds  
to the maximum value of dk

ij below which the decision-maker is indifferent 
between the two alternatives xi and xj according to the considered criterion. 

The preference modelling, at the time of the decision process, requires  
for each alternative xi, the use of the preference indexes Cij, the outgoing flow 
φi

+, the incoming flow φi
− and the net flow φi. 

Therefore, it is necessary to calculate for every alternative xi:   
– The preference index Cij which represents the degree of preference for xi 

with regard to xj over all the criteria simultaneously. 

1
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Where wk is the relative importance coefficient (RIC) given to each criterion k 
with wk ≥ 0 and Σwk= 1, the greater the RIC, the more important the criterion. 
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– The incoming flow φi
− which represents the weakness of a with regard  

to other alternatives. 

1, 

r

i ji
i j i

C−

= ≠

= ∑φ  
(4)

– The net flow φi which is the difference between the outgoing and the 
incoming flows. 

i i iφ φ φ+ −= −  (5)
 

3. Determination of PROMETHEE’s indifference  
thresholds 

Within the framework of the PROMETHEE method, the decision-maker 
is invited to provide directly the analyser with information concerning 
alternatives, criteria, the assessment of each alternative according to each 
criterion, the nature of each criterion function, as well as all parameters’ values 
required for the implementation of the method. The quantitative information 
that he must provide (relative importance coefficients, preference and 
indifference thresholds) is not always easy to put in evidence. Besides, many 
other factors such as the order in which criteria are presented to the decision- 
-maker, the moment at which he is interrogated or the type of the alternative 
assessed, can lead to considerable variation of parameter values. Consequently, 
the parameters’ values provided directly by the decision maker are subjective 
and not very reliable. In what follows, we propose to deduce some of these 
parameters from global information given by the decision-maker. 

We suppose that the criteria relative importance coefficients (r.i.c) wk  
are known. Criterion functions can only take the form of the usual-criterion  
or the quasi-criterion. The decision matrix (which is composed of alternatives, 
criteria as well as the assessment of alternatives according to each criterion)  
is known and the decision-maker is invited to provide us with p preference 
relations on some alternatives; relations of the type: alternative xi is preferred  
(≻) to alternative xj. Our objective is to determine the indifference thresholds qk 
associated to each criterion k through the resolution of the first mixed integer 
linear program. When qk takes the value zero, the kth criterion is a usual one.   
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Program 1: 
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              1, ,m mS m p+ ≥ ∀ = Kα  (12)

, 0               1, ,m mS S m p− + ≥ ∀ = K (13)

where: 

Pk
ij is the preference index of xi on xj according to the criterion k, 

dk
ij is the difference between of assessment of xi and xj according to the 

criterion k, 
where  

( ) ( )k i k j
k
ij g x g xd = −  if the criterion k is to be maximised, 

( ) ( )k j k i
k
ij g x g xd = −  if the criterion k is to be minimised, 

p  is the preference relation number provided by the decision-maker,   
n  is the criteria number, 
r  is the alternative number. 

The objective function (6) consists in minimizing the sum of the negative 
deviations. In this paper, we regard the p preference relations expressed  
by the decision-maker (xi≻xj) as goals to be achieved. In fact, in PROMETHEE 
method, the “goal” of having xi preferred to xj (xi≻xj) means that φi > φj  
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then φi − φj > 0. We can transform these inequalities into equalities by 
introducing two slack variables which represent the deviations between the 
achievements and the decision-maker’s preferences (goals). 

Let’s note by S+
m the positive deviation in case of objective exceeding 

and by S−
m the negative deviation in the opposite case. 

Therefore, (xiφxj) means that ߶ −  ߶ +  ܵି −  ܵା = 0 with ܵା ≥ 0  
and  ܵି ≥ 0. 

In order to reach the goal (xiφxj), it is necessary that φi > φj. We can 
transform this inequality into equality, by subtracting a positive deviation S+

m 

then 0i j mSφ φ+ − +− − =  with ܵା > 0 and  ܵି = 0.    
In order to satisfy all the preferences expressed by the decision-maker, 

we must minimize all the negative deviations, which must be ideally null. The 
objective function will be, therefore, the minimization of the negative deviation 
sum (6), then the risk encountered is that at the optimality, all the positive  
and negative deviations are null. In this case, 0 i j m mS Sφ φ − +− + − = becomes 
φi − φj = 0 and the decision-maker will be indifferent between the alternatives  
i and j, which is in contradiction with the preference relations provided. 

However, (xiφxj) means that φi − φj > 0. We must therefore have at least  
a small difference between φi and φj. In order to have φi > φj, and to satisfy  
the equality 0 i j m mS Sφ φ − +− + − =  with mS −  taking its minimal value (we prefer 
that 0mS − = ), we must have 0mS + > . For this reason, we introduce in the 
program constraints of the type    1, ,m mS m p+ ≥ α ∀ = K  (12) fixing a minimum 
threshold αm to each positive deviation S+

m in order to prevent it from being 
null. Now, the question is how to choose these thresholds?   

We start with fixing an arbitrary threshold αm to each S+
m and we solve 

the mathematical program. At this level, we are interested in positive deviation 
values S+

m only. 
If the positive deviation values found are much larger than threshold 

values fixed in the constraints ( m mS + > α ), then thresholds are well fixed.  
However, if the positive deviation values found are equal to the threshold 

values fixed in the constraints ( m mS + = α ), then there exists a risk that S+
m would 

have another value smaller than αm, but this cannot happen because of the 
constraint m mS + ≥ α . Hence, it took the minimum, which is equal to αm. In this 
case, we decrease the threshold’s value αm and we solve the program again.  
We verify if the positive deviation values found are much greater than threshold 
values, and so forth… If the mathematical program does not have a solution,  
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we must reduce the αm’s and we solve it again. In fact, when many constraints 
are satisfied, the program may have no solution. When αm (the alternatives 
preference degree) are reduced, the program may have solution(s).  

Concerning the other program constraints, the constraint (7) is related  
to preference relations provided by the decision-maker. In fact, the relation 
(xiφxj), expressed by the equality 0 i j m mS Sφ φ − +− + − = , leads us to write the 7th 
constraint.   

Every modification in the preference relations’ information provided  
by the decision-maker will induce modifications at the level of preference 
functions’ values, variables of the program. The modifications of the Pk

ij’s 
values can result either in changes in the indifference threshold values, or in  
its maintenance at its initial value (because different preference function 
matrices can give the same value of qk). 
As for the constraint (8) of the program, it expresses the cases where the 
preference function is null. The preference function Pk

ij, whose assessment 
differs according to the criterion nature, is defined separately for every criterion 
in (1). Hence, the constraint: If  ݀  ≤ 0  then  ܲ = 0. 

The constraint (9) expresses the comparison between preference 
functions’ values, while basing on the comparison between alternative 
assessment differences. Three cases are presented:   
– dk

hl ≤ qk hence Pk
hl =0, and since dk

ij ≤ dk
hl then Pk

ij =0 (therefore Pk
ij = Pk

hl 
= 0). 

– dk
ij  > qk hence Pk

ij =1, and since dk
ij ≤ dk

hl then Pk
hl =1 (therefore Pk

ij = Pk
hl 

= 1). 
– dk

ij ≤ qk < dk
hl hence Pk

ij =0 and Pk
hl =1 (therefore Pk

ij < Pk
hl). 

From these three cases, we conclude that   if  k k k k
ij hl ij hlP P d d≤ ≤   

The constraint (10) requires that the sum of the symmetrical preference 
functions’ values not exceed 1. Indeed, the assessment difference matrix  
is symmetrical with regard to the diagonal, where i = j. It means that if dk

ij = a, 
then dk

ji = −a (a∈ϒ). In fact, when dk
ij ≤ 0 then Pk

ij = 0 and when dk
ji>0 then  

Pk
ji = 0 or Pk

ji = 1, all depends on the indifference threshold value qk. Therefore, 
Pk

ij and Pk
ji cannot, both of them, take the value 1. Either one is null and the 

other is equal to 1 or each of them is null. Hence, 1k k
ij jiP P+ ≤ . 

Besides, the constraint (11) indicates that the preference function in the 
cases of usual-criterion and quasi-criterion is a binary variable that can only 
take the values 0 and 1. Indeed, 
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0     if         

1    if     

k
ij kk

ij k
ij k

d q
P

d q

⎧ ≤⎪= ⎨
>⎪⎩

 (14)

The last constraint represented in the program of indifference threshold 
determination is (13): the constraint of no negativity ( , 0m mS S− + ≥ ) which 
requires that slack variables not be negative.  

The solution of this program provides us with the values of the variables 
Pk

ij, S+
m and S−

m. 
From the values of the Pk

ij, dk
ij and the relation (14), and by taking into 

account that qk is the indifference threshold that corresponds to the smallest 
assessment difference leading to conclude the strict preference, we deduce  
the indifference threshold values qk.   

The program can have multiple solutions. In this case, we determine  
all the program solutions (possible values of the Pk

ij), and we deduce 
indifference thresholds qk associated with each solution. We assume that all 
indifference threshold values are integer. All these threshold values found 
permit to respect the preference relations provided by the decision-maker.  
In addition, the threshold values found permit us to find out the nature  
of the criteria. Indeed, if qk = 0, the criterion is usual, and if qk is strictly 
positive, we have the quasi-criterion. 

After having found out all the possible solutions of the thresholds qk,  
and in the framework of an interactive approach, we ask the decision-maker  
to provide information concerning intervals for the indifference thresholds qk. 
Among solutions, we look for the one or ones that belong to the intervals.     
– If none of the solutions belong to the interval, we ask the decision-maker  

to change the qk’s intervals.    
– If a solution is found, we communicate it to the decision-maker.    
– If more than one solution are found in an interval, we ask the decision- 

-maker to reduce the kth interval, or we give him solutions (whose number  
is reduced), and ask him to choose one of them.  

After having deduced the indifference threshold values associated with 
each criterion, we apply the PROMETHEE method in order to get the total 
alternative ranking. We present them, together with the preference functions,  
to the decision-maker. He can then modify the alternative ranking (change  
the starting information on his preferences or add another preference relation  
in contradiction with the final alternative ranking).  
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In this case, the modified information will be modelled in the mixed 
integer linear program in order to determine the new indifference threshold 
values that will be presented to the decision-maker. This interactive approach  
of the indifference threshold determination is summarized in the following chart 
(Figure 3). 

 
 

 
 
 
Figure 3. General diagram of the interactive approach 
 

4. Illustrative example 

We suppose a decision problem with three criteria C1, C2 and C3 and six 
alternatives A, B, C, D, E and F is given. The criteria’s r.i.c wk are given,  
the indifference threshold qk as well as the type of each criterion function 
(usual-criterion or quasi-criterion) are to be determined. The decision-maker 
provides the following decision matrix (Table 1). 

 
 
 

No 

No 

Start 

Provide some binary preference relations  

Optimize to obtain a preference model 

End 

Yes 

Revise some  
preferences 

Yes Fix an interval of variation  
for each qk 

Accepted Model Determine the solution(s)  
belonging to all the intervals 

Multiple solutions 
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Table 1 

 
Decision matrix 

Alternatives 
Criteria 

C1 
(Max) 

C2 
(Max) 

C3 
(Min) 

A 
B 
C 
D 
E 
F 

6 
4 
5 
6 
6 
5 

5 
2 
7 
1 
8 
6 

28 
25 
35 
27 
30 
26 

Normalized r.i.c 0,3 0,5 0,2 
 

The decision-maker provides the following information concerning some 
binary preference relations:  EφF, AφD, DφB, FφC, EφB.  

The assessment difference matrices dk
ij, as well as the preference function 

matrices Pk
ij are represented in Table 2, using the following formula:  Pk

ij = 0  
if  dk

ij ≤ 0. 
 

Table 2 
 

Assessment difference matrices and preference function  matrices 
 
For  k = 1 

d1
ij A B C D E F  P1

ij A B C D E F 
A  2 1 0 0 1  A  P1

12 P1
13 0 0 P1

16 

B −2  −1 −2 −2 −1  B 0  0 0 0 0 
C −1 1  −1 −1 0  C 0 P1

32  0 0 0 
D 0 2 1  0 1  D 0 P1

42 P1
43  0 P1

46 

E 0 2 1 0  1  E 0 P1
52 P1

53 0  P1
56 

F −1 1 0 −1 −1   F 0 P1
62 0 0 0  

 
For  k = 2 

d2
ij A B C D E F  P2

ij A B C D E F 
A  3 −2 4 −3 −1  A  P2

12 0 P2
14 0 0 

B −3  −5 1 −6 −4  B 0  0 P2
24 0 0 

C 2 5  6 −1 1  C P2
31 P2

32  P2
34 0 P2

36 

D −4 −1 −6  −7 −5  D 0 0 0  0 0 
E 3 6 1 7  2  E P2

51 P2
52 P2

53 P2
54  P2

56 

F 1 4 −1 5 −2   F P2
61 P2

62 0 P2
64 0  
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For  k = 3 

d3
ij A B C D E F  P3

ij A B C D E F 
A  −3 7 −1 2 −2  A  0 P3

13 0 P3
15 0 

B 3  10 2 5 1  B P3
21  P3

23 P3
24 P3

25 P3
26 

C −7 −10  −8 −5 −9  C 0 0  0 0 0 
D 1 −2 8  3 −1  D P3

41 0 P3
43  P3

45 0 
E −2 −5 5 −3  −4  E 0 0 P3

53 0  0 
F 2 −1 9 1 4   F P3

61 0 P3
63 P3

64 P3
65  

 
We deduce the preference index matrix Cij, which is given in Table 3. 

From this matrix, we calculate the incoming flows, the outgoing flows as well  
as the net flows.     

In order to determine the indifference threshold values qk, we model  
the information provided by the decision-maker in a mathematical program 2. 
 

Table 3 
 

Preference index matrix 

Cij A B C D Ε F 
A  0.3P1

12+0.5P2
12 0.3P1

13+0.2P3
13 0.5P2

14 0.2P3
15 0.3P1

16 

B 0.2P3
21  0.2P3

23 0.5P2
24+0.2P3

24 0.2P3
25 0.2P3

26 

C 0.5P2
31 0.3P1

32+0.5P2
32  0.5P2

34 0 0.5P2
36 

D 0.2P3
41 0.3P1

42 0.3P1
43+0.2P3

43  0.2P3
45 0.3P1

46 

E 0.5P2
51 0.3P1

52+0.5P2
52 0.3P1

53+0.5P2
53+0.2P3

53 0.5P2
54  0.3P1

56+0.5P2
56 

F 0.5P2
61+0.2P3

61 0.3P1
62+0.5P2

62 0.2P3
63 0.5P2

64+0.2P3
64 0.2P3

65  
 

Program 2: 

1 2 3 4 5

1 1 1 1 1 1 1 2 2 2 2 2 2 2
52 53 56 62 16 46 56 51 52 53 54 56 61 62

2 2 2 3 3 3
64 36 56 53 15 25

 
 

 :  0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.2 0.2 0.2 0

Min S S S S S
Subject to
E F P P P P P P P P P P P P P P

P P P P P P

− − − − −+ + + +

+ + − + + + + + + + + − −

− + + + − − −

f

3 3 3 3 3 3 3
45 65 61 63 64 65 26 1 1

1 1 1 1 1 1 2 2 2 2 2 2 2 2
12 13 16 42 43 46 12 14 31 51 61 14 24 34

2 2
54 64

-.2 0.2 0.2 0.2 0.2 0.2 0.2 0;

 :  0.3 0.3 0.3 0.3 0.3 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

0.5 0.5 0

P P P P P P P S S
A D P P P P P P P P P P P P P P

P P

+− − − − − + + − =

+ + − − − + + − − − + + +

+ + +

f

3 3 3 3 3 3 3 3 3 3
13 15 21 41 61 41 43 45 24 64 2 2

1 1 1 1 1 1 1 1 2 2 2 2 2
42 43 46 12 32 42 52 62 14 24 34 54 64

-.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0;

 :  0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.5 0.5 0.5 0.5 0.5 0

P P P P P P P P P P S S
D B P P P P P P P P P P P P P

++ − − − − − − + + + − =

+ + + + + + + − − − − − −f 2
24

2 2 2 2 3 3 3 3 3 3 3 3 3 3
12 32 52 62 41 43 45 24 64 21 23 24 25 26 3 3

1 1 1 1 1 1 1 1
62 16 46 56 32 13 43 53

.5
-0.5 0.5 0.5 0.5 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0;

:  0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.

P

P P P P P P P P P P P P P P S S
F C P P P P P P P P

++ + + + + + + − − − − − − − + − =

− − − − + + + +f 2 2 2 2 2 2
61 62 64 36 56 31

2 2 2 2 3 3 3 3 3 3 3 3 3 3
32 34 36 53 61 63 64 65 26 13 23 43 53 63 4 4

1 1 1
52 53 56

5 0.5 0.5 0.5 0.5 0.5
-0.5 0.5 0.2 0.5 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0;

:  0.3 0.3 0.3 0.3

P P P P P P

P P P P P P P P P P P P P P S S

E B P P P

+

+ + − − −

− − − + + + + + − + + + + + + − =

+ + +f 1 1 1 1 1 2 2 2 2 2 2
12 32 42 52 62 51 52 53 54 56 24

2 2 2 2 3 3 3 3 3 3 3 3 3 3
12 32 52 62 53 15 25 45 65 21 23 24 25 26 5

0.3 0.3 0.3 0.3 0.5 0.5 0.5 0.5 0.5 0.5
-0.5 0.5 0.5 0.5 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

P P P P P P P P P P P

P P P P P P P P P P P P P P S

+ + + + + + + + + −

+ + + + + − − − − − − − − − +

{ }

5 0;

If     then        ,  1, ,6 and  1, ,6 ,   1, ,3 

                                                 ,  1, ,6 and 1, ,6
0,1              ,  1, ,6 and 

k k k k
ij hl ij hl

k
ij

S
d d P P i j i j k

h l h l
P i j i

+− =

≤ ≤ ∀ ≠ = = ∀ =

∀ ≠ = =

∈ ∀ ≠ =

K K K

K K

K  1, ,6,   1, ,3

0,01                 1, ,5

, 0              1, ,5
m

m m

j k

S m
S S m

+

− +

= ∀ =

≥ ∀ =

≥ ∀ =

K K

K

K
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By solving the second program, we notice that it has multiple solutions 
respecting all preference relations provided by the decision-maker. 

From the Pk
ij’s matrices, the dk

ij’s matrices and the relation (14),  
we determine the indifference threshold values qk and we deduce the type 
associated with each criterion. The results are given in Table 4. 

 
Table 4 

 
The multiple solutions of the mathematical program 

Solutions 
1st criterion 2nd criterion 3rd criterion 

q1 Criterion type q2 Criterion type q3 Criterion type 
1st solution 0 Usual-criterion 6 Quasi-criterion 8 Quasi-criterion 
2nd solution 0 Usual-criterion 2 Quasi-criterion 4 Quasi-criterion 
3rd solution 0 Usual-criterion 0 Usual-criterion 4 Quasi-criterion 
4th solution 0 Usual-criterion 1 Quasi-criterion 3 Quasi-criterion 
5 th solution 0 Usual-criterion 2 Quasi-criterion 2 Quasi-criterion 
6 th solution 0 Usual-criterion 1 Quasi-criterion 1 Quasi-criterion 
7 th solution 0 Usual-criterion 2 Quasi-criterion 1 Quasi-criterion 
8 th solution 0 Usual-criterion 2 Quasi-criterion 0 Usual-criterion 
9 th solution 0 Usual-criterion 0 Usual-criterion 2 Quasi-criterion 

10 th solution 0 Usual-criterion 2 Quasi-criterion 3 Quasi-criterion 
11 th solution 0 Usual-criterion 0 Usual-criterion 0 Usual-criterion 
12 th solution 0 Usual-criterion 0 Usual-criterion 1 Quasi-criterion 
13 th solution 0 Usual-criterion 1 Quasi-criterion 0 Usual-criterion 
14 th solution 0 Usual-criterion 1 Quasi-criterion 2 Quasi-criterion 
15 th solution 0 Usual-criterion 6 Quasi-criterion 4 Quasi-criterion 
16 th solution 0 Usual-criterion 5 Quasi-criterion 1 Quasi-criterion 
17 th solution 0 Usual-criterion 4 Quasi-criterion 1 Quasi-criterion 
18 th solution 0 Usual-criterion 4 Quasi-criterion 0 Usual-criterion 
19 th solution 0 Usual-criterion 6 Quasi-criterion 2 Quasi-criterion 
20 th solution 0 Usual-criterion 5 Quasi-criterion 0 Usual-criterion 
21 th solution 0 Usual-criterion 6 Quasi-criterion 3 Quasi-criterion 

 
All the indifference threshold values qk of each solution permit to respect 

preference relations provided by the decision-maker.    
The decision-maker communicates to us the following information 

concerning intervals of indifference threshold values: q1∈[0, 2], q2∈[0, 4], 
q3∈[2, 6]. Among the solutions found, and taking into account the assumption 
that the indifference thresholds must have integer values, seven solutions belong 
to the fixed intervals (the 2nd, the 3rd, the 4th, the 5th, the 9th, the 10th and the 
14th). In this case, we ask the decision-maker to reduce the intervals already 
fixed. Then, he presents to us the following new intervals: q1∈[0, 2], q2∈[2, 4], 
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q3∈[4, 6]. The 2nd solution belongs to the given intervals, therefore q1 = 0, 
q2 = 2, q3 = 4. The first criterion is then a true-criterion, whereas the second  
and the third are quasi-criteria.   

While applying the PROMETHEE method with the indifference 
thresholds found, we get the following alternative ranking: E, A, F, C, D, B 
which satisfy the decision-maker.  

Conclusions 

In this paper, we clarified and illustrated an approach which permits  
to determine the indifference threshold values associated with each criterion  
in the framework of the PROMETHEE II method. This approach of indifference 
threshold determination presents the advantage of modelling with the 
unavoidable subjectivity and uncertainty at the level of the alternative 
assessment, as well as the direct intervention of the decision-maker in the 
decision process. In addition, it offers us the possibility to start from partial 
information concerning the preference relations on some pairs of alternatives  
in order to reach a total ranking, and this is in the context of PROMETHEE II 
method. 

The extension of the methodology for the simultaneous determination  
of indifference and preference threshold values associated with the criteria 
function of type criterion with linear preference, level criterion, criterion with 
linear preferences and indifference area is a direction of research that we pursue 
presently, the preference threshold (p) corresponds to the minimum value of dk

ij 
above which we consider that the alternative xi is strictly preferred to xj. 
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