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Abstract 

In several multiobjective decision problems Pairwise Comparison Matrices 
(PCM) are applied to evaluate the decision variants. The problem that arises very often 
is inconsistence of given PCM. In such a situation it is important to approximate  
the PCM with a consistent one. The most common way is to minimize the Euclidean 
distance between the matrices. In the paper we consider minimization of the maximum 
distance. 
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Introduction 

One of the popular tools of multiobjective decision making is the 
Analytic Hierarchy Process, introduced by Saaty [see e.g. Saaty 1980; Erkut  
and Tarimcilar 1991] and studied by numerous authors. During the process,  
the Decision Maker compares pairwise n given decision variants. Usually  
the comparisons are represented by the pairwise comparison matrix A = [aij], 
where the number aij says how many times the variant i is preferred  
to the variant j. 

The values of aij, i = 1, 2, …, n, j = 1, 2, …, n should fulfill the following 
conditions: 

௝ܽ௜ =  1ܽ௜௝  for ݅ = 1, 2, … , ݊, ݆ = 1, 2, … , ݊, (1)

ܽ௜௝ ௝ܽ௞ = ܽ௜௞ for ݅ = 1, 2, … , ݊, ݆ = 1, 2, … , ݊, ݇ = 1, 2, … , ݊. (2)
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If the above conditions are satisfied, the pairwise comparison matrix A is 
called consistent. The condition (1) is rather easy to fulfill in practice (the 
decision maker may e.g. fill only the elements of A above  the diagonal and then 
the remaining ones are easily calculated). The condition (2) is much more 
difficult to satisfy and is the main source of the inconsistency. 

It is easy to prove that the matrix A is consistent if and only if there exist 
positive weights w1, w2, …, wn (forming the vector w) such that ܽ௜௝ = ௝ݓ௜ݓ , ݅ = 1,2, … , ݊, ݆ = 1, 2, … , ݊ (3)

The elements of w are interpreted as the explicit values representing the 
priorities of the decision variants. Finding their values is thus essential. Note 
that if some vector w defines the matrix A then also the vector ݓߣ for every ߣ > 0. 

1. Problem formulation 

As in real-life problems the matrix A is very often not consistent, it is 
impossible to find the vector w (in fact, it does not exist). In such a situation the 
goal is to find the vector ݓ that defines the matrix B which is as close as 
possible to the original pairwise comparison matrix A. 

The distance between matrices A and B may be calculated in various 
ways. One of the methods is to calculate Saaty’s inconsistency index using the 
eigenvalues of the (relative) estimation error matrix, which can be approximated 
by the row-wise geometric means [see e.g. Saaty 1980; Mogi and Shinohara 
2009]. Estimation errors are calculated as the quotients or differences of the 
respective elements of A and B. Another approach, based on the additive PCM 
(a formulation equivalent to the one discussed in this paper), may be found e.g. 
in Fedrizzi, Giove [2007]. 

Another approach is to calculate some kind of average of errors. The 
most popular measure is the square mean calculated according to the formula 

,ܣ)ଶܩ (ݒ = ቆଵ௡ ∑ ∑ ൬ܽ௜௝ − ௩೔௩ೕ൰ଶ௡௝ୀଵ௡௜ୀଵ ቇభమ.  (4)

This method of the inconsistency measurement (called least square 
method, LSM) was introduced in this context by Chu et al. [1979] and used e.g. 
by Anholcer et al. [2011], Bozóki [2008], Fülöp, Koczkodaj and Szarek [2010], 
Fülöp [2008], Bozóki and Rapcsàk [2008], Mogi and Shinohara [2009]. 
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In the last two papers other inconsistency measures were also considered. 
Mogi and Shinohara analyzed the general mean which can be defined as 

,ܣ)௣ܩ (ݒ = ൬ଵ௡ ∑ ∑ ฬܽ௜௝ − ௩೔௩ೕฬ௣௡௝ୀଵ௡௜ୀଵ ൰భ೛.  (5)

If ݌ = 2, we obtain the LSM. Other special cases, also considered in the 
paper, are ݌ = −∞ (minimum), ݌ = −1 (harmonic mean), ݌ = 0 (geometric 
mean), ݌ = 1 (arithmetic mean) and ݌ = ∞ (maximum). In the remainder  
of this paper we will be interested in the last measure. To be more precise,  
we want to solve the following problem: min ൜ܩஶ(ܣ, (ݒ = maxଵஸ୧,୨ஸ୬ ൜ฬܽ௜௝ − ௩೔௩ೕฬൠൠ ,  (6)

s.t. ݒଵ = ௝ݒ(7) ,1 > 0,  ݆ = 1, 2, … , ݊. (8)

The condition  ݒଵ = 1 has been introduced to normalize the vector v (if some 
vector v is the solution to the above problem, then also every vector ݒߣ for 
every ߣ > 0). Of course other normalizing conditions can be used [compare e.g. 
Anholcer et al. 2011; Bozóki 2008; Fülöp 2008]. 

The problem under consideration is a difficult optimization problem, as 
the objective function is neither convex nor concave and thus no local search 
algorithm may be applied to find the global optimum. 

The LSM problem (with ܩଶ instead of ܩஶ) was studied e.g. in Anholcer 
et al. [2011] − heuristic approach, Bozóki [2008] − systems of nonlinear 
equations and Fülöp [2008] − branch and bound algorithm. The statistical 
approach was used by Hovanov, Kolari and Sokolov [2008], while Mogi and 
Shinohara [2009] used simulation. Our goal is to give an effective method to 
derive the weights minimizing the value of function ܩஶ as the inconsistency 
measure. 

2. New algorithm 

The problem (6)-(8) may be reformulated as follows. Let us introduce 
additional variable ݖ = ,ܣ)ஶܩ (9) ,{ݖ}Then we can rewrite the problem as min .(ݒ
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s.t. ฬܽ௜௝ − ௩೔௩ೕฬ ≤ ,ݖ ݅, ݆ = 1, 2, … , n  (10)

ଵݒ = ௝ݒ(11) ,1 > 0, ݆ = 1, 2, … , ݊. (12)

Note that the problems are not identical (the sets of feasible solutions are 
distinct), but they are equivalent (the optimal solutions to both problems are the 
same and they always exist). The problem (9)-(12) is a difficult mathematical 
programming problem – the constraints (10) are nonlinear, neither convex nor 
concave. Moreover, the set of feasible solutions is not closed and thus not 
compact (although the optimum exists). In order to find its approximate solution 
we are going to treat z as a parameter. 

If we assume that the value of z is given, the problem (9)-(12) reduces to 
the following system of linear equations and inequalities: ൫ܽ௜௝ − ௝ݒ൯ݖ ≤ ௜ݒ ≤ ൫ܽ௜௝ + ௝ݒ൯ݖ ݅, ݆ = 1, 2, … , n (13)ݒଵ = ௝ݒ(14) ,1 ≥ 0, ݆ = 1, 2, … , ݊. (15)

Note that the constraint (12) may be replaced with (15) as none of ݒ௝ can be 
equal to 0 – otherwise all of them would be equal to 0 according to the 
constraints (13). That would in turn contradict the constraint (14). 

The number of inequalities (13) may be reduced. First, for every i, the 
inequalities (ܽ௜௜ − ௜ݒ(ݖ ≤ ௜ݒ ≤ (ܽ௜௜ + ௜ are always satisfied as ܽ௜௜ݒ(ݖ = 1 and ݖ ≥ 0. 

Another operation lets us remove half of the remaining inequalities. Let 
us consider the two inequalities in which the variables vi and vj occur for some ݅ ≠ ݆. They can be rewritten in the following form: −ݒ௜ + ൫ܽ௜௝ − ௝ݒ൯ݖ ≤ 0, (16)

௜ݒ− + 1൫ ௝ܽ௜ + ൯ݖ ௝ݒ ≤ 0, (17)

1൫ܽ௜௝ + ൯ݖ ௜ݒ − ௝ݒ ≤ 0, (18)
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Exactly one of the inequalities (16) and (17) implies the other one, so one 
of them can be removed. More precisely, we leave the inequality −ݒ௜ + ൬max ൜൫ܽ௜௝ − ,൯ݖ ଵ൫௔ೕ೔ା௭൯ൠ൰ ௝ݒ ≤ 0.   (20)

Analogously, we can eliminate one of the inequalities (18) and (19), by 
choosing the following one ቆmax ቊ൫ ௝ܽ௜ − ,൯ݖ 1൫ܽ௜௝ + ൯ቋቇݖ ௜ݒ − ௝ݒ ≤ 0. (21)

Note that in both cases the chosen maxima have positive values. To solve 
the resulting system of linear inequalities and equations, we formulate the 
following auxiliary linear programming problem. min (22)  {଴ݖ}

s.t. 

௜ݒ− + ൬max ൜൫ܽ௜௝ − ,൯ݖ ଵ൫௔ೕ೔ା௭൯ൠ൰ ௝ݒ + ௜௝ଵݖ = 0, 1 ≤ ݅ < ݆ ≤ n,  (23)

൬max ൜൫ ௝ܽ௜ − ,൯ݖ ଵ൫௔೔ೕା௭൯ൠ൰ ௜ݒ − ௝ݒ + ௜௝ଶݖ = 0, 1 ≤ ݅ < ݆ ≤ n,   (24)

ଵݒ + ଴ݖ = ௝ݒ(25)  ,1 ≥ 0, ݆ = 1, 2, … , ଴ݖ(26)   ,݊ ≥ 0, ௜௝௞ݖ ≥ 0,   1 ≤ ݅ < ݆ ≤ ݊, ݇ = 1,2.  (27)

We solve the above problem using the adapted version of the simplex 
method. The initial feasible base solution is formed by the variables included in 
constraint (27): ݖ଴ = 1 and    ݖ௜௝௞ = 0,   1 ≤ ݅ < ݆ ≤ ݊,   ݇ = 1,2. The reduced 
costs are equal to the coefficients in the constraint (25). Also, we use additional 
stopping criterion: ݖ଴ = 0. If this criterion is used, the initial system of 
inequalities has feasible solution where the values of ݒ௝ are equal to those in the 
optimal solution of the problem (22)-(27). On the other hand, if the standard 
optimality condition is in use, that means that ݖ଴ = 1 and the problem (22)-(27) 
is inconsistent. 
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Note also that if the feasible solution exists for some value of ݖ =  ,⋆ݖ
then it is also the solution for every value ݖ ≥  That means also that if the .⋆ݖ
system (13)-(15) is inconsistent for some value of ݖ =  then it is also ,⋆ݖ
inconsistent for every ݖ ≤  This leads us to the following algorithm, where .⋆ݖ
the starting point is generated by the geometric means of rows of A. 

Algorithm 1 

1. Assume the accuracy level ߝ > 0. Let ݒ௜⋆ = ൫∏ ܽ௜௝௡௝ୀଵ ൯భ೙ and ݒ௜ = ௩೔⋆௩భ⋆ for ݅ = 1, 2, … , ݊. Let ݖ = ௠௔௫ݖ = ,ܣ)ஶܩ ௠௜௡ݖ and (ݒ = 0. Proceed to step 2. 
2. If ݖ − > ௠௜௡ݖ   then STOP. The vector v is the desired approximation ߝ

of the weight vector w. Otherwise go to step 3. 
3. Set ݖ ≔ (௭೘ೌೣି௭೘೔೙)ଶ . Solve the problem (22)-(27). If ݖ଴ = 0, save the new 

value of v and set ݖ௠௔௫: = :௠௜௡ݖ Otherwise do not change the value of v and set .ݖ = ݖ ,ݖ ≔  .௠௔௫. Go back to step 2ݖ
 

In every step of the algorithm the value of ݖ௠௔௫ −   ௠௜௡ decreases twice, soݖ
in the finite number of iterations we obtain the approximation of the optimal 
solution (more precisely, if ݖ௠௔௫⋆  denotes the initial value of ݖ௠௔௫ , then  
the algorithm stops after ቒlogଶ ቀ௭೘ೌೣ⋆ఌ ቁቓ steps). 

3. Numerical example 

Let us present a small illustrative example. Assume that 

ܣ = ێێێۏ
ۍ 1 2 1 5 20.5 1 0.8 2.5 0.41 1.25 1 2.5 10.2 0.4 0.4 1 0.80.5 2.5 1 1.25 ۑۑۑے1

ې
 

and ߝ = 0.1. 
Step 1. We derive the initial solution as the geometric means of the rows and 
divide all of them by v1, so ݒଵ = ଶݒ  ,1.000 = ଷݒ ,0.457 = ସݒ ,0.690 = ହݒ ,0.264 = 0.821. The matrix derived with the values ݒ௝ has the form 

ܤ = ێێێۏ
1.000ۍ 2.187 1.450 3.789 1.6650.457 1.000 0.663 1.733 0.7610.690 1.509 1.000 2.614 1.1490.264 0.577 0.383 1.000 0.4390.601 1.313 0.871 2.276 ۑۑۑے1.000

 .ې
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As one can easily check, the inconsistency measure equals 1.211. Thus  ݖ௠௜௡ = 0 and ݖ = ௠௔௫ݖ = 1.211.  
Step 2. ݖ௠௔௫ − ௠௜௡ݖ >  .we proceed to step 3 ,ߝ
Step 3. ݖ = 0.605. In the optimal solution of the problem (22)-(27), ݖ଴ = 1. 
Thus ݖ௠௜௡ = ݖ ,0.605 = ௠௔௫ݖ = 1.211. We go back to step 2. 
Step 2. ݖ௠௔௫ − ௠௜௡ݖ >  .we proceed to step 3 ,ߝ
Step 3. ݖ = 0.908. In the optimal solution of the problem (22)-(27), ݖ଴ = 1. 
Thus ݖ௠௜௡ = ݖ ,0.908 = ௠௔௫ݖ = 1.211. We go back to step 2. 
Step 2. ݖ௠௔௫ − ௠௜௡ݖ >  .we proceed to step 3 ,ߝ
Step 3. ݖ = 1.059. In the optimal solution of the problem (22)-(27), ݖ଴ = 0  
and ݒଵ = ଶݒ  ,1.000 = ଷݒ ,0.366 = ସݒ ,0.486 = ହݒ ,0.254 = 0.527. We save 
this solution. Moreover, ݖ௠௜௡ = ݖ ,0.908 = ௠௔௫ݖ = 1.059. We go back  
to step 2. 
Step 2. ݖ௠௔௫ − ௠௜௡ݖ >  .we proceed to step 3 ,ߝ
Step 3. ݖ = 0.984. In the optimal solution of the problem (22)-(27), ݖ଴ = 1 
Thus ݖ௠௜௡ = ݖ ,0.984 = ௠௔௫ݖ = 1.059. We go back to step 2. 
Step 2. ݖ௠௔௫ − ௠௜௡ݖ < ଵݒ STOP. The optimal weights are equal to ,ߝ = ଶݒ  ,1.000 = ଷݒ ,0.366 = ସݒ ,0.486 = ହݒ ,0.254 = 0.527. They define 
consistent PCM of the form 

ܤ = ێێێۏ
1.000ۍ 2.735 2.059 3.941 1.8990.366 1.000 0.753 1.441 0.6940.486 1.328 1.000 1.914 0.9220.254 0.694 0.523 1.000 0.4820.527 1.441 1.085 2.075 ۑۑۑے1.000

 .ې
 

4. Computational experiments 

The algorithm has been implemented in Java and tested for a number  
of randomly generated problems. The assumed accuracy level was ߝ = 0.001. 
The application has been tested on the PC with Intel Core2 Duo CPU 
(2.20 GHz). For every value of ݊ = 3,4, … ,10 (in real-life problems, the size  
of the comparison matrix rarely exceeds 10) the elements of A were chosen 
uniformly at random from the interval < 1, ܽ୫ୟ୶ >, where ܽ௠௔௫ ∈ {3,5,10}. 
All PC matrices obtained were inconsistent. In every case 100 problems have 
been solved (which gives the total number of 2400 test problems). The average 
running times (in milliseconds) are given in the Table 1. 
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Table 1 
 

Average running times 

n amax = 3 amax = 5 amax = 10 
3 0,0117 0,0127 0,0158 
4 0,0237 0,0284 0,0297 
5 0,0528 0,0550 0,0605 
6 0,0979 0,1240 0,1191 
7 0,1720 0,1998 0,2047 
8 0,2686 0,2934 0,3288 
9 0,4215 0,4546 0,5110 
10 0,6271 0,6607 0,7507 
 

As we can see, in all the cases the running times are much less than one second, 
which is acceptable time in real life applications. 

Conclusions 

The algorithm presented guarantees obtaining the solution for which the 
objective value is arbitrarily close to the optimal one. Of course this does not 
mean that the coordinates of vector v are arbitrarily close to their optimal values 
(distinct local optima may be far from each other even if the objective values 
are very close). However it is more that gives the heuristic for LSM given by 
Anholcer et al. [2011], which does not guarantee obtaining the objective value 
close to the optimal one. On the other hand the algorithm presented is fast and 
therefore very useful for finding the best consistent approximate of an 
inconsistent pairwise comparison matrix. 

As far as the author knows the method presented here is the first one for 
the inconsistency measured using the maximum distance ܩஶ. Further research 
should focus on looking for the exact method of solving this problem and any 
methods for other measures (e.g. ܩ௣ distance for arbitrary p, including 
Manhattan distance ܩଵ). 
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