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Abstract 

 
We present an application of a methodology we developed earlier to capture 

a decision maker’s preferences in multiobjective environments to a notorious 

problem in the realm of Air Traffic Management, namely the Airport Gate 

Assignment Problem. 

The problem has been modelled as an all-integer optimisation problem with 

two criteria. 

We have implemented this methodology into the commercial solver CPLEX 

and also into an Evolutionary Multiobjective Optimisation algorithm and we have 

solved with them a numerical instance of the Airport Gate Assignment Problem 

for a couple of decision making scenarios. 

 

Keywords: preference capture, airport gate assignment, exact optimization 

computations, evolutionary optimization computations 

1 Introduction 

Nowadays Multiple Criteria Decision Making (MCDM) problems are most often 

solved interactively (Miettinen, 1999; Ehrgott, 2005; Kaliszewski, 2006). 

Interactive decision making processes reflect best the natural dynamics of the 

Decision Maker (DM) problem recognition, accumulation of knowledge about 
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interplay of problem driving factors and DM's ability to reveal preferences about 

outcomes of different factor patterns. 

Along this line, a methodology has been proposed to capture DM's 

preferences in the course of interactive decision making processes (Kaliszewski, 

2004, 2006) which subsumes two classic MCDM methods, namely the 

weighting method and the reference point method. This methodology is quite 

general. It is applicable to any MCDM problem which uses Multiobjective 

Optimisation (MO) as the underlying formal model. Moreover, the methodology 

is independent of optimisation methods and solvers used to solve MO. Over time 

this methodology has been coupled with MCDM methods based on approximate 

calculations of efficient outcomes (Kaliszewski, 2006), evolutionary 

computations (Miroforidis, 2008, 2010; Kaliszewski, 2008; Kaliszewski, 

Miroforidis, 2009, 2012b; Kaliszewski et al., 2012), and classical optimisation 

calculations (Kaliszewski, Miroforidis, 2012a). 

This work is an extension of an earlier research reported in Kaliszewski, 

Miroforidis (2012a). There we presented a model for a notorious problem of Air 

Traffic Management, namely the Airport Gate Assignment Problem (AGAP) 

(Dorndorf et al., 2007). The rationale behind the model was to assist air ground 

services in a small or medium size airport in assigning flights to gates under 

conflicting criteria. We showed that under the concept of time windows the 

problem can be effectively decomposed into a series of smaller problems and we 

argued that under such a decomposition the deterioration of optimality of 

solution, if any, is not very significant. To illustrate how the preference capture 

methodology works it was tested on a small instance of AGAP where efficient 

assignments were derived by enumeration. This, however, raised a question of 

scalability of the model to practical sizes. Moreover, the ability of optimisation 

software, academic and commercial, to cope with such problems in the 

preference capture methodology environment was still an open question. 

To perform optimisation calculations, in this paper we use commercial 

software, namely the CPLEX package – a leader of many benchmarks. By this 

we attempt to convey the message that the methodology we developed couples 

well with commercial optimisation solvers able to handle effectively medium- 

and large-scale problems. This in turn paves the way for scalability of MCDM 

problems into the realm of such sizes. 

We complement this work by mirroring CPLEX computations by an 

Evolutionary Multiobjective Optimisation (EMO) algorithm implemented 

specifically for that task. Our intention was to draw preliminary comparability 

conclusions on the workload and scalability with respect to those two distinct 

optimisation paradigms. 

The outline of the paper is as follows. In the next section we present an 

adaptation of a model of AGAP adequate for small airports and presented in 

Kaliszewski, Miroforidis (2012a). In the subsequent section, for the sake of 

completeness, we give a concise description of our multiple criteria decision 
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making methodology (for a more detailed treatment cf. Kaliszewski et al., 2012). 

Lastly, we apply this methodology to a small but illustrative instance of the 

presented AGAP model with the help of the CPLEX package and our custom-

coded EMO solver, and we comment briefly on the suitability of these solvers 

for medium- and large-scale instances of AGAP. We conclude with some 

remarks on possible directions of future research. 

2 AGAP for a Small Airport 

The problem under consideration is to assign incoming flights to airport gates in 

time horizon  . If at a given time there is no gate to serve a flight that flight (the 

corresponding plane) can be directed to wait for a gate or it can be served at 

once on the airport apron. Waiting times and the number of flights served on the 

apron are best if both are equal to zero but in the case of airport overload they 

are in an obvious conflict. 

We assume that the airport under consideration: 

1) is small, so gate assignments have no significant impact on passenger 

walking distance, 

2) all gates can serve any flight, 

3) there are no constraints on neighbour gate operations, 

4) any flight can wait to be served at a gate for time   at most and after that 

time it is served on the apron. 

2.1 The Model 

A flight           t is characterised by arrival time    and ground 

operation time (for short: ground time)    (time needed to serve flight   at a 

gate). Arrival times, ground times and waiting times are assumed to be discrete 

with interval  . Hence, the maximal waiting time is      for some     

and time horizon is       for some    .  

Let     
  be a binary variable which is equal to 1 if flight   is assigned to gate   

at time   and equal to 0 if otherwise. No assignment to a gate can be made 

before flight   arrives, hence for      the variables     
  are undefined. 

Similarly, no assignment to a gate can be made after a flight has waited   time 

intervals for a gate assignment (after that time this flight is served on the apron), 

hence for         the variables     
  are undefined. 

With   gates there are  ∑       
            variables     

     

A flight   can be assigned at most once to at most one gate, so 

∑ ∑     
     

    

 
     , for        .    (1) 

There are   constraints of type (1). 
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Let     
  be a binary variable which is equal to 1 if gate   is serving flight   at 

time  , and equal to 0 if otherwise. No assignment to a gate can be made before 

flight   arrives, hence for      the variables     
  are undefined. Similarly, gate 

  cannot serve flight   after             since after         flight   is 

served on the apron. Hence, for             the variables     
  are 

undefined. 

The number of variables     
  is equal to  ∑          

   . 

If flight   is assigned to gate          , at time   (i.e.     
   ) then 

this gate is not available for another flight assignment for       consecutive 

time intervals starting from interval  , i.e. for interval               . 

This condition is equivalent to: 

    
      

  ,       

    
      

    ,      

         (2) 

    
   

   

    
 ,      

where              .  

There are  ∑         
    constraints of type (2).  

As constraints of that type are the most numerous in the model, we propose a 

more concise formulation resulting from replacing constraints (2) by their 

logical equivalent: 

      
      

      
       

   

    
,    (2') 

where              .  

The number of constraints of type (2') is equal to the number of variables 

    
  , hence it is equal to  ∑       

           . 

No more than one flight can be assigned to a gate at a time, so: 

∑     
  

                          (3) 

where * is the index of the flight scheduled as second. There are at most 

          constraints of type (3); the exact number of these constraints 

depends on the flight arrival time structure. 

Gate   at time   can serve at most one flight, so:  

∑     
  

                        .  (4) 

There are at most           constraints of type (4); the exact number 

of these constraints depends on the flight arrival time structure. 

If flight   is assigned to a gate at its arrival time    then there is no waiting 

time. Otherwise, the waiting time for flight   equals: 

  ∑  
   

     
     ∑  

   

     
       ∑     
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and the total waiting time over all flights is: 

        ∑  ∑  
   

     
     ∑  

   

     
       ∑     

  
   

 
    . (5) 

If flight   is not assigned to a gate then it is assigned to the apron, so:  

∑ ∑     
       

    

 
        , for             (6) 

where    is a binary variable equal to 0 if flight   is assigned to a gate and equal 

to 1 otherwise.  

There are   variables    and   constraints of type (6).  

With        
      ∑   

 
    ,     (7) 

as the objective function to be minimised, at optimality with respect to       

(i.e. when variables     
       

  and    are optimal with respect to       first and 

then with respect to      , in that order) or at efficiency (i.e. when variables 

    
       

  and    are efficient with respect to       and      , for the definition 

of efficiency see the next section), the number of variables    taking value 1 will 

be minimal but not less than the value dictated by constraints (6). 

Objective functions (5) and (7) together with constraints (1), (2'), (3), (4) and 

(6) constitute a bicriteria model for AGAP at a small airport. Values of objective 

functions at efficient assignment represent rational compromises between 

waiting time and the number of apron operations. 

The model can accommodate also other objective functions because the 

multiple criteria decision making methodology we present in the next section 

can deal with any number of criteria. In Kaliszewski, Miroforidis 2012a, we 

considered a similar model where instead of the total waiting time the maximal 

waiting time over all flights was minimised. For that purpose in our earlier paper 

we used the following form of the first objective function: 

             ∑  
   

     
     ∑  

   

     
       ∑  

   

     
    . (5') 

However, this function works in the context of the AGAP problem correctly 

only if a solving method (solver) assigns flights to gates as soon as a gate is idle. 

However, with a general method (solver) this is not always guaranteed and this 

is the case with the general purpose solver CPLEX. In consequence, when 

working with objective function (5'), assignments can be derived in which for 

the minimal value of maximal (over flights) waiting time the minimal individual 

flight waiting time is not minimal. In other words, assignments can be derived in 

which, for the minimal value of maximal (over flights) waiting time, flights are 

not assigned to gates as early as possible (aeap assignments). Such assignments 

cannot be accepted in practice. This situation can be avoided either by adding to 

the model a significant number of constraints modelling precedence-type 

relations, which in consequence may hamper the scalability of the model, or by 
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adding to objective function (5') a penalty term in the form of a small fraction of 

objective function (5) to eliminate non-aesp assignments.  

In this paper we have decided to apply a symmetric approach, namely to 

work primarily with objective function (5). This guarantees that all assignments 

will be aeap but raises, in turn, the question of individual flight waiting times. 

One can expect, however, that the maximal flight waiting time limited to   and 

a decomposition of the AGAP problem to a series of time windows (cf. the next 

section) will moderate the maximal waiting times of AGAP assignments 

produced. Eventually, to ensure that for a given value of the total waiting time 

the maximal waiting time is minimal (there can be multiple solutions with the 

same values of the total waiting time), one can add to objective function (5) 

a penalty term in the form of a small fraction of objective function (5'). 

2.2 Time windows 

The model presented is all-integer and linear and if a penalty term in the form of 

a small fraction of objective function (5') is added to objective function (5), the 

model can be again made linear by a transformation of that term (a 

transformation analogous to that used in the next subsection to linearize in 

optimisation problem (9) the maximum function).  

The problems (instances of the model) to be solved are of considerable size 

even for modest values of     and   (cf. the previous subsection). Although 

we have no influence on the magnitude of   and  , we can decrease the 

magnitude of   significantly by employing the concept of time windows. 

Observe that in the model an apron is a buffer which absorbs all flights which 

cannot wait sufficiently long for an assignment to a gate. In the previous 

subsection we have set that threshold to     Hence, in the model any flight is 

assigned to the apron at the latest at its arrival time plus     Suppose that the 

time horizon      of AGAP is divided into time windows of equal size such 

that window width is not greater than    (see Appendix 1 for an example). 

Then, in the model a flight whose arrival time is in time window   will never 

compete for a gate assignment with a flight whose arrival time is in time window 

    . Hence, the model for AGAP can be solved separately in each time 

window for all flights with arrival times in that window. Gate assignments in a 

given time window which overlap with the next time window can be represented 

in time window     by fixing the corresponding variables     
  to 1 but this 

requires that AGAP have to be solved sequentially in separate time windows, 

starting from the first time window. 

Solving AGAP in separate time windows does not guarantee optimality with 

respect to the whole time horizon   but makes the entire problem much more 

manageable from the computational point of view.  
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3 The Multiobjective Methodology 

Let   denote a (decision) variant (solution),   a space of variants,    a set of 

feasible variants,      . Then the multiobjective optimisation problem is: 

  vma              

        (8) 

     ,       

where        ,           ,        ,        ,    , are 

objective functions (criteria);   vma    denotes the operator of deriving all 

efficient (as defined below) variants in    . 

A variant  ̅ of    is efficient if            ̅                  
implies         ̅  . 

It is a well-established result (cf. Kaliszewski, 2006; Ehrgott, 2005; 

Miettinen, 1999) that variant  ̅ is efficient
1
 if and only if it solves the 

optimisation problem: 

       
       (  

       )                 ,  (9) 

where             ,           ,    is such that   
           

           , and   is a positive “sufficiently small” number
2
. 

By the “only if” part of this result no efficient variant is a priori excluded 

from being derived by solving an instance of optimisation problem (9). In 

contrast to that, the maximisation of a weighted sum of objective functions over 

   does not have, in general (and especially in the case of problems with 

discrete variables), this property. 

Let  ̂          
             . We can restate the above result 

saying that a variant  ̅ such that     ̅    ̂  for all        , is efficient (cf. 

footnote 4) if and only if it solves the optimisation problem: 

       
       ( ̂       )        ̂         , (9') 

This is an immediate consequence of accounting in the proof of the only if 

part of Theorem 4.3 in Kaliszewski (1994) for the condition     ̅    ̂  for all 

       . Efficient solutions with     ̅    ̂  for some    ̃        }, 

can be derived with the optimisation problem: 

       
        ̃   ( ̂       )        ̂         ,  (9'') 

        ̂       ̃ . 

At the first glance, the objective function in (9') (       ( ̂       )  

      ̂       ) seems difficult to handle. However, observe that optimisation 

problem (9') is equivalent to: 

                                                      
1
 Actually, variant  ̅ is   properly efficient, for a formal treatment of this issue cf. 

e.g. Kaliszewski (2006), Ehrgott (2005), Miettinen (1999). 
2
 Kaliszewski (2006), Ehrgott (2005), Miettinen (1999). 
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      , 

    ( ̂       )      ( ̂      )         , 

     . 

An analogous observation applies to optimisation problem (9''). 

Besides the potential ability to derive each efficient variant, optimisation 

problem (9 ) provides an easy and intuitive capture of decision maker’s 

preferences. Observe that an element  ̂ (recall that  ̂         
        

     ) represents maximal values of objective functions which can be 

attained if they are maximised separately. 

To assist the decision maker in the search for the most preferred variant one 

can employ the optimisation problem (9') or (9''). By this we assume a modicum 

of rationality on the part of the decision maker, namely we assume that the 

decision maker prefers an efficient variant to any variant dominated by it 

(variant  ̅ dominates variant   if     ̅                 and     ̅  
      for at least one  .  

Suppose that an element      such that  ̂       does not exist which 

is rather a standard situation of conflicting criteria (otherwise,   is clearly the 

most preferred variant). Then, the decision maker knows that to derive an 

efficient variant he (or she) has to compromise on values of objective functions 

   with respect to values  ̂  ,        . He can define his acceptable 

compromises on values  ̂  ,        , and by this direct of search for an 

efficient variant which corresponds to these compromises in three ways: 

1) providing a vector of concessions   , 
2) providing a reference point     , 

3) providing weights            . 

Way 1. The components of a vector of concessions    specify concessions the 

decision maker is willing to make with respect to  ̂          . The 

components of the vector   can be defined in absolute values (“the decision 

maker is willing to make a concession of    units on the value  ̂     
     ”) or in relative values (“the decision maker is willing to make 

a concession of    per cent on the value  ̂          ”).  

Way 2. A reference point      (           
   

  ̂           , (it 

is irrelevant whether there exists an element      such that           or 

not) specifies explicitly a compromise between values of objective functions    

with respect to values  ̂  ,        , which the decision maker regards as 

agreeable (Wierzbicki, 1999). A reference point specifies indirectly a vector of 

concessions: 

    ̂     
   

           .   (10) 
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Way 3. An experienced decision maker can define a vector of concessions 

  in terms of weights             , in optimisation problem (9') or (9'').  

 

For               the vector of concessions   and the vector of 

weights   are related by the formula (Kaliszewski, 2006): 

        
           ,   (11) 

If      for some   then this means that the decision maker is not willing 

to make any concessions on  ̂  and he (she) is interested only in efficient 

solutions for which        ̂  for that   . Then optimisation problem (9') 

should be replaced by optimisation problem (9'') with  ̃ composed of all 

indices           such that     . Hence, from now on we shall assume 

without loss of generality that             . 

The optimisation problem (9'), if solved with            , given by 

formula (11), has the following property: 

 it finds an efficient variant   such that      is on the half line    ̂  
       , whenever such a variant exists, 

 otherwise, it finds an efficient variant   such that         ̂  
            ̂                ̂   ̃        ̂   ̃ , where 

 ̃ is on the half line    ̂         . 

4 Solving an AGAP Instance 

Consider the following instance of AGAP. In the time horizon of 2 hours 

there are 5 flights scheduled as in Table 1. These flights can be served at two 

gates or on apron. The discretisation interval is     minutes. All ground times 

are equal to 50 minutes. The upper bound on waiting time   is 6 discretisation 

intervals, i.e. 30 minutes. 

 
Table 1 

TIME WINDOW i 

FLIGHT ARRIVAL TIME 

1 0:05 
2 0:15 

3 0:30 
4 0:40 

5 0:45 

 

We illustrate on this e ample the MCDM methodology for decision maker’s 

preference capture presented in the previous section. The methodology has been 

outlined for problems where all objective functions are maximised whereas in 

our example objective functions, waiting time and the number of apron 

operations, are to be minimised. Thus, to have in our example both objective 
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functions in the “ma ” form, we simply change signs of values of objective 

functions. For example, if we maximise in the adapted problem “minus” the 

number of apron operations then -1 apron operation is better than -3 apron 

operations, which is a purely technical convention.  

 

4.1 The AGAP Instance 

The instance of our AGAP model to be solved has the following structure. 

There are 70 binary variables     
  , 170 binary variables     

  and 5 binary 

variables    , 245 binary variables in total. 

There are 70 constraints of type (2'), 44 constraints of type (3), 23 constraints 

of type (4) and 5 constraints of type (6), 142 constraints in total.  

In addition to structural variables     
       

        to simplify manipulations 

with objective functions (5) and (7), we add (in this case nonnegative) variables 

  ,   : 

         and         . 

This increases the size of the model to 247 variables, 245 binary and 2 

continuous and nonnegative, and 144 constraints among which 137 are of “less 

than or equal to” type and 7 are of “equal to” type.  

For optimisation problem (9) one additional (in this case nonnegative) 

variable and two additional “greater than or equal to” type constraints are 

needed. In this case the model has 248 variables, 245 binary and 3 continuous 

and nonnegative, and 146 constraints among which 137 are of “less than or 

equal to” type, 2 are of “greater than or equal to” type and 7 are of “equal to” 

type.  

In CPLEX nonnegativity of variables is assumed by default, so there is no 

need to add such constraints explicitly. 

4.2 Solving the AGAP Instance with CPLEX 

We used the above model to simulate an AGAP decision making process with 

calculations performed by CPLEX solver. 

To derive  ̂, first we have calculated the maximal value of the function 

       (formula (5)). The optimal value of this function is 0. It is worth 

observing that CPLEX produced this value with 0 gate and 5 apron operations, 

while clearly for the same value of        only 3 apron operations are feasible 

(any 2 out of 5 flights can be served by two gates without a delay, so there are 

(
 
 
)     solutions with this optimal value), thus the assignment produced is 

not efficient (it is weakly efficient). The efficiency of assignments is not 

essential when deriving just  ̂  but to work with efficient assignments only we 

maximized                with           (cf. a comment in Section 2 
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on the value of the function       at the optimality of the function      ). This 

modified objective function produced an efficient assignment #1 (Table 2; in 

tables below WT denotes waiting time and #APRON denotes the number of 

apron operations). 

Next we have calculated the maximal value of the function        (formula 

(7)). The optimal value of this function is   . For the same reasons as above we 

maximized                with the same value of  . This modified 

objective function produced an efficient assignment #2 (Table 2). 

 
Table 2 

FLIGHT-GATE/APRON ASSIGNMENTS BY CPLEX 

No Scenario GATE 1 GATE 2 APRON - WT - #APRON 

#1 yref = (-15.00,-1.00) 

 = (1.00,1.00) 1 4 2,3,5 0 -3 

#1a  = (5.00,1.00) 2 1 3,4,5 0 -3 

#2 - 1,4 2,5 3 -45 -1 

#3  = (10.00,1.00) 1,5 3 2,4 -15 -2 

#3a yref = (-25.00,-2.00) 3 1,5 2,4 -15 -2 

#3b  = (1.00,23.00) 4 1,5 2,4 -15 -2 

 

So in the adapted problem we have  ̂        . 

The clearly best combination:   waiting time and    apron operation is not 

possible in that problem (if it were, the maximization of                or 

               would produce it) so the decision maker has to compromise 

on  ̂, i.e. accept assignments which are worse than this combination with respect 

to at least one objective function. 

As presented in the previous section, the decision maker can define his 

favourable compromises in three ways. Here we show how he can act along each 

of these ways. Below, in all computations we have used           (cf. 

formulae (9), (9'), (9'')). 

1. Suppose that the decision maker is willing to make concessions on the 

(impossible) best combination  ̂ and he defines such concessions by (the 

vector of) favourable concessions: (10 minutes waiting time, 1 apron 

operation). Hence               . By formula (11)             . 

With these weights the objective function of optimisation problem (9') has 

the smallest value for assignment #3 (15 minutes waiting time, 2 apron 

operations) (see Figure 1).  

Suppose now that the decision maker is willing to make concessions on the 

(impossible) best combination  ̂ but this time he defines such concessions by 

(the vector of) favourable concessions: (5 minutes waiting time, 1 apron 

operation). Hence              . By formula (11)              . With 
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these weights the objective function of optimisation problem (9') has the 

smallest value for assignment #1a (0 minutes waiting time, 3 apron operations). 

Here #Nx denotes an assignment which has the same values of objective 

functions as assignment #N but differs from assignment #N and possibly other 

assignments #Nx by flight gate/apron assignments. 

2. Suppose that the decision maker specifies explicitly a compromise between 

the number of apron operations and waiting time he would like to achieve or 

at least to approximate as closely as possible: 15 minutes waiting time, 1 

apron operation. Observe that in our problem there is no such assignment, 

nevertheless the reference point                     (signs have to 

be reverted for the adapted problem) captures the decision maker’s 

preferences for that point as described in the previous section. By formula 

(10) and formula (11)               . As     , this means that the 

decision maker is not willing to make any concessions on  ̂    . Hence 

the problem reduces to maximization of        which has been already 

done when calculating  ̂  and this yielded assignment #1. 

Suppose now that the decision maker specifies explicitly another compromise 

between the number of apron operations and waiting time he would like to 

achieve or at least to approximate as closely as possible: 25 minutes waiting 

time, 2 apron operations. Hence,                     and by formula 

(10)                and by formula (11)              . With these 

weights the objective function of optimisation problem (9) has the smallest value 

for assignment #3a.  

Suppose that the decision maker specifies directly two vectors of 

weights   where from his experience with the problem (e.g. the problem 

was solved many times in the past) he knows that the first vector leads 

to assignments with a small number of apron operations whereas the 

second leads to assignments with low waiting times. Let those vectors 

be:                 and               .  

In the first case the objective function of optimisation problem (9') has the 

smallest value for assignment #3b (15 minutes waiting time, 2 apron operations).  

In the second case the objective function of optimisation problem (9') has the 

smallest value for assignment #1 (0 minutes waiting time, 3 apron operations). 

All scenarios for the problem have been solved with CPLEX on a UNIX 

platform in less than 0.1 seconds. 

4.3 Solving the AGAP Instance with Evolutionary Optimisation 

We have mirrored all calculations listed in the previous section with a custom-

made evolutionary optimisation algorithm (E‒AGAP). A brief description of this 

algorithm is given in Appendix 2. 
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As expected, for all the decision making scenarios considered in Section 4.2, 

E‒AGAP has produced the same results as CPLEX with respect to values of 

objective functions, as shown in Table 3. However, for the same values of 

objective functions, E‒AGAP and CPLEX produced different solutions 

(assignments). 

All scenarios for the problem have been solved with algorithm E‒AGAP on a 

PC computer with Linux operating system in less than 1 second. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. A graphical interpretation of searching for optimal solution in the example 

problem with the vector of concessions τ = (10.00, 1.00). Here the smallest 

value of the objective function in optimisation problem (9') is attained for 

assignment #3 

 
Table 3 

FLIGHT-GATE/APRON ASSIGNMENTS BY E‒AGAP 

No Scenario 
GATE 

1 

GATE 

2 
APRON - WT - #APRON 

 

#1b 
 = (5.00, 1.00) 4 5 1, 2, 3 0 -3 

yref = (-15.00,-1.00) 4 5 1,2,3 0 -3 

 = (1.00, 1.00) 4 5 1,2,3 0 -3 

 

#3c 
 = (10.00, 1.00) 1,5 2 3,4 -15 -2 

yref = (-25.00, -2.00) 1,5 2 3,4 -15 -2 

 = (1.00, 23.00) 1,5 2 3,4 -15 -2 

 

𝒚  

-3

-2

-1

-60 -50 -40 -30 -20 -10 0 10

Apron  

operations 

Waiting time 

Assignment 

#1  

Assignments #3x 
τ 

Assignments #2x 
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5 Concluding Remarks 

In principle there is no limit for applicability of the methodology we have 

developed and we recommend to problems of higher dimensions than those 

solved in the paper as long as a solver can handle problem (9). 

In the paper we have solved a small instance of a multiple criteria decision 

problem using a commercial optimisation package. Here by solving multiple 

criteria decision problems we mean the ability to derive any efficient solution 

(decision variant) which the decision maker implicitly points to by his/her 

preferences. 

We have shown that the methodology for decision makers’ preference 

capture seamlessly works with CPLEX with no need for any adaptation of the 

package, so in fact it would work in that manner with any commercial solver. As 

CPLEX is reported to be able to solve problems with thousands of variables and 

constraints this opens the door for applying MCDM to practical problems of 

considerable sizes as required in some industries.  

We have also shown that heuristics, such as Evolutionary Multiobjective 

Optimisation, can be easily fitted to our methodology as a potential viable 

alternative to CPLEX. The lack of guarantee of optimality in such methods is 

outweighed by their flexibility, adaptability and low cost.  

This poses the question of how those two computing paradigms relate to each 

other in the function of growing size and complexity of decision making 

problems such as AGAP. In more general terms, it would be of utmost interest 

and importance for MCDM community to to which extent heuristics such as 

Evolutionary Multiobjective Optimisation (cf. e.g. Kaliszewski et al., 2012), can 

be competitive with the exact optimisation. Investigations of that question are 

the intended topic for our future research. 

Appendix 1 

Consider a flight schedule as in Table 1, Section 4. As said in Section 4.2, the 

upper bound for the width of time windows allowing sequential solving of the 

AGAP is   , which in this case is 30 minutes. It is shown in Figure 1 that to this 

aim time windows of       minutes are not wide enough and in Figure 2 it is 

shown that time windows of 4     minutes of the minimal required size. 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

  flight 1                       

    flight2                     

          flight 3               

                flight 4         

                  flight 5       

Figure 1. For time windows of  minutes some flights extend over more than two 

windows 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

  flight 1                     

    flight2                   

          flight 3             

                flight 4       

                  flight 5     

Figure 2. For time windows of  minutes no flight extends over more than two windows 

Appendix 2 

The purpose of solving AGAP with evolutionary optimisation was to get some 

comparative experience in solving MCDM problems with a commercial 

software (such as CPLEX) and a sort of heuristics. To that aim we have 

implemented a heuristic algorithm – E‒AGAP ‒ which mimics principles of 

evolutionary computations. At the current stage, the algorithm solves just the 

instance of AGAP used in this paper as an illustrative numerical example, but it 

can be easily parameterised to handle any AGAP instances. 

In the algorithm each individual is composed of three queues, two for the 

gates and one for the apron. In other words, each individual represents a variant 

of gate/apron assignment. In the initialisation step for each individual flights are 

randomly scheduled to queues. Then, in consecutive iterations, flights are 

rescheduled by genetic-like operators. Three operators are used: exchange 

operator, relocation operator and selection operator.  

The exchange operator chooses randomly two flights assigned to different 

queues and exchanges them. The relocation operator selects randomly a flight 

from a queue and places it in a randomly selected position in a gate queue (not 

apron queue). If possible with respect to the fitness function, both operators can 

be used in the same iteration several times on the same individual.  

Following the idea exposed in Stańczak (2003), in the course of the algorithm 

a record of actions of these two operators is kept for each individual. An 
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operator with more historical success in improving values of objective functions 

for a given individual has a better chance to be called to act on that individual.  

In contrast to the exchange operator and the relocation operator, which act if 

called to, the selection operator is called in each iteration to select individuals 

from the next iteration population. 

The fitness function used in our paper is in fact a mechanism which besides 

computing values of objective functions has a built-in functionality of correcting 

infeasible solutions, namely: if a flight waits too long for a service, the fitness 

function assigns it to the apron queue.  

To account for multiple criteria interplay the selection operator employed 

promotes nondominated solutions. If the population of nondominated solutions 

becomes too small some dominated best-fit solutions also become candidates for 

selection. 

The evolutionary optimisation algorithm composed in this manner has been 

effective in solving the instance of AGAP problem considered in this paper. For 

more challenging instances of AGAP the algorithm can be endowed with some 

other (as many as appropriate) genetic-like operators (cf. Stańczak, 2003). 
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