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Abstract 
 

One of the methods of scalarization of a multi-criteria problem is the 
application of a quasi-hierarchy, determined by the decision maker. In dis-
crete problems, to apply this method it is necessary to have an algorithm 
which generates the optimal solution and the consecutive solutions, con-
tained within the tolerance interval determined by the decision maker. This 
paper presents algorithms generating the consecutive realizations for  
a multi-stage deterministic decision-making process as well as an algo-
rithm generating the consecutive strategies for a multi-stage stochastic de-
cision-making process. Algorithms using these solutions in a multi-criteria 
quasi-hierarchical process are also proposed. 

 

Keywords: multiple objective dynamic programming, quasi-hierarchy, i-th process realization, 
i-th strategy, optimality equations. 
 
1 Introduction 
 

In this paper we shall deal with discrete one- and multi-criteria decision-making 
problems, divided into a finite number of stages. Their characteristic feature is 
that for each individual stage of the problem, finite sets of feasible states are 
known, and for each state, the finite set of admissible decisions is also known. 

In deterministic processes, the transition from one state to another in the consecu-
tive stages is determined by transition functions, whose arguments are: the state of the 
process at the beginning of the given stage and the decision made. In stochastic proc-
esses we assume that we know the probabilities of the transition, depending on the 
state of the process at the beginning of the given stage, and of the decision made. 
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A realization of the process in the deterministic case consists of a sequence of 
states and decisions, which transfer the process from an admissible start state to 
an end state, taking into account the relationships resulting from the transition 
function. In single-criterion problems we are interested in the optimal realiza-
tion, that is, a realization maximizing the given multi-stage criterion function. 
This function is a composition (usually an additive one) of stage criterion func-
tions. In multi-criteria problems we are interested in finding the set of non-
dominated process realizations (which is usually very large). 

In the stochastic case, a strategy is a function mapping each admissible state 
to a given decision. In single-criterion problems we are interested in the optimal 
strategy, that is, a strategy which maximizes the expected value of the multi-
stage criterion function. In multi-criteria problems we are interested in finding 
the set of non-dominated strategies (which, as in the deterministic case, is usu-
ally very large). 

When solving the problem of finding the optimal strategy of the process, we 
apply Bellman’s optimality principle. Many applications of dynamic program-
ming can be found already in early books in operations research, for instance, in 
Wager (1975). Multi-criteria decision-making processes were discussed by 
Trzaskalik, in Trzaskalik (1990, 1998) and in other papers. Extensions and appli-
cations for multi-criteria processes can be found, for instance, in Nowak, 
Trzaskalik (2014, 2013); Trzaskalik, Do Thien Hoa (1999); Trzaskalik, Sitarz 
(2007, 2009). 

While in the single-criterion case usually only one optimal realization of the 
process exists, in the multi-criteria case the number of non-dominated realiza-
tions can be considerable. The search for the set of all efficient realizations can 
be difficult or even impossible. For that reason, various methods of scalarization 
of the multi-criteria problem are used. 

One of the scalarization methods is the use of a hierarchy of criteria determined 
by the decision maker. This means that the decision maker is able to formulate a hi-
erarchy of criteria so that the most important criterion is assigned the number 1; the 
number 2 is reserved for the second-most important criterion, and so on. We as-
sume that all the criteria considered in the problem can be numbered in this way.  

We solve the hierarchical problem sequentially. First we find the set of solu-
tions which are optimal with respect to the most important criterion. Out of this 
set, we select the subset of solutions optimal with respect to the criterion number 2. 
We continue this procedure until we determine the subset of solutions which are 
optimal with respect to the least important criterion. 

The hierarchical approach has a certain essential shortcoming. It turns out 
that very often the subset of solutions obtained when an important criterion in 
the hierarchy is considered has only one element. As a result, the selection of the 
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solution with respect to less important criteria is determined and these criteria do 
not play an essential role in the process of determining the final solution. For 
that reason, a quasi-hierarchical approach is often applied. It consists in taking 
into account, once the (single-criterion) problem has been solved with respect to 
the most important criterion, not only the best solution, but also those solutions 
which are close to the optimal solution and contained within the tolerance inter-
val determined in advance by the decision maker. Among the solutions found 
this way we find the best solution with respect to the second criterion and in the 
next step we take into account this solution as well as those solutions which are 
close to the optimal solution and contained within the tolerance interval with re-
spect to the second criterion fixed in advance by the decision maker. This proce-
dure is continued until the least important criterion. 

In the application of the quasi-hierarchical procedure the possibility of gener-
ating not only the optimal solution, but also near optimal solutions, plays  
a key role. The solutions considered with respect to the consecutive criteria 
should be ordered so as to place the optimal solution first, the solution having 
the second value, second, etc. The ordering of solutions with respect to the first 
(most important) criterion is of particular importance. The consecutive solutions 
should be generated as long as they are contained within the tolerance intervals 
determined by the decision maker. 

The problems of generating  near optimal solutions in dynamic programming 
and related fields were taken up already in the past. Elmaghraby (1970) de-
scribed a solution of the problem of seeking the k-th path between two arbitrary 
nodes in a graph. The search for the consecutive values in the multi-stage deter-
ministic process was described in Trzaskalik (1990). But the problem of generat-
ing the consecutive realizations of a process has not been exhaustively described 
there. The problem of finding  near optimal strategies in a decision tree and an 
application of the algorithm proposed to the quasi-hierarchical approach have 
been proposed by Nowak (2014), who has observed that the search for near op-
timal strategies can begin with a strategy differing from the optimal strategy by 
the decision in one state only. This approach, as applied to multi-criteria stochas-
tic dynamic programming, was developed in Trzaskalik (2015). 

The aim of this paper is to describe a method of finding the consecutive solu-
tions in the stochastic and deterministic cases of single-criterion dynamic pro-
gramming, and to apply this approach to finding solutions of multi-criteria 
quasi-hierarchical problems. 

This paper consists of an introduction, two main sections, final remarks and 
two appendices. In the second section, which follows the introduction, we will 
describe deterministic discrete decision-making processes. We will show how to 
find the consecutive values of the criterion function and to generate the consecu-
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tive realizations of a process, on the basis of optimality equations. The algorithm 
obtained will be used in the quasi-hierarchical procedure proposed. In the third 
section we will describe stochastic processes. As in the deterministic case, we 
will show how to find the consecutive expected values of the criteria function 
and how to generate the consecutive strategies, on the basis of optimality equa-
tions. Next, we will present the quasi-hierarchical procedure for the stochastic 
case. Final remarks conclude the paper. Because of the importance and the de-
gree of complexity of the algorithm generating the i-th realization of a process 
and the i-th strategy, complete solutions of these examples are in the appendices. 
 
2 Deterministic case 
 
2.1 i-th optimal value and i-th process realization 
 

We will use the following notation (Trzaskalik, 1998, 2015):  
T – number of stages of the decision process under consideration,  
yt – state of the process at the beginning of stage t (t = 1,…,T),  
Yt – finite set of process states at stage t,  
YT+1 – finite set of process states at the end of the process, 
xt – feasible decision at stage t,  
Xt(yt) – finite set of decisions feasible at stage t, when the process was in state 

yt∈Yt at the beginning of this stage,  
dt – process realization in the stage t; we have:  
                                                        dt = (yt, xt)                                                    (1)  
Dt – set of process realizations in stage t,  
Ωt(yt, xt) – transition function; we have:  
                                                     yt+1= Ωt(yt, xt)                                                  (2) 
d – process realization; we have:  
                                       d = ((y1, x1), (y2, x2), …, (yT, xT)                                    (3) 
where:                                      y1 ∈ Y1, x1 ∈ X1(y1)  

y2 = Ω1(y1, x1) x2 ∈ X2(y2) 
…………………. 

yT = ΩT-1(yT – 1, xT – 1) xT ∈ XT(yT) 
yT+1 = Ωt(yT, xT) 

D – set of all process realizations,  
( )tTt yd ,  – shortened realization, starting from yt and encompassing stages from 

t to T; we have:  

                            
( ) ( ) ( ) ( )[ ]TTtttttTt xyxyxyyd ,,,,,, 11, …++=

                            (4) 
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( )tTt y,D  – set of all shortened realizations, starting from yt and encompassing 

stages from t to T, 
Ft(dt) – stage criterion function,  
F(d) – criterion function evaluating process realization d; we have:  
 

 

                                                    Ft(d) = ∑ Ft(dt)                                                (5)  
 

The finite set D of process realizations can be divided into M classes in such 
a way that: 
                                               D = D1 ∪ D2 ∪ … DM                                          (6) 
where: 
                                                   Di ∩ Dj for i ≠ j                                                (7) 

                                   
( ) ( )kj

ddMi dFdFikj =∀∀
∈= D,,,1…                                   (8) 

                               { } { } { } { } }{}{ ji
xxji xGxGjjii >∀∀∀

∈∈< XX                              (9) 
Let d1∈D1, d2∈D2, …, dM∈DM and F(D)={F(d1), …, F(dM)}. i-th process value 
is defined as Gi. We have:  

                                                       ( )ii dFG =                                                 (10) 
Each realization from the set Di is named i-th process realization. We will use 

notation:  

                                               ( ) ( )dFF i
i =Dmax                                           (11) 

The way of determining i-th process value and i-th process realization is de-
scribed below. 
Algorithm 1 
1. Starting from i = 1 for each yT ∈ YT we calculate the i-th value:  

                                         ( ) ( )TTTiT
i
T xyFyG ,max=                                      (12)  

and find the set of shortened process realizations ( )TTT y,D , for which this 

value is attained.  
2. Starting from i = 1 for stage t, 1,1−∈Tt  and each yt ∈ Yt we calculate the i-th value: 

                 
( )

( )
( ) ( )( ){ }ijxyGxyFyG ttt

j
tttt

yx
it

i
t

tt

,,1:,,max 1 …=+= +
∈

Ω
X             

 (13)
 

and find the set of shortened process realizations Dt(yt), for which this value 
is attained.  

3. The i-th process value is calculated from the formula: 

                              ( ){ }1111 ,,,1:max Y∈== yijyGG j
i

i …                            
(14)

 
4. The set of all i-th process realizations is calculated from the formula:  

                           
( ) ( ){ }ijGyGy ijj

y

i ,,1,: 11
11

…∪ ===
∈

DD
Y                         

 (15)
 

t=1

T
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Example 1 
We consider a three-stage deterministic decision process. The sets of states for 
the consecutive stages are as follows:  

Y1 = {1,2} Y2 = {3,4}  Y3 = {5,6} 
We have the following set of final states of the process:  

Y4 = {7,8} 
The sets of feasible decisions are as follows:  

X1(1) = {A, B} X2(3) = {E, F} X3(5) = {I, J} 
X1(2) = {C, D} X2(4) = {G, H} X3(6) = {K,L} 

The graph of the process is given in Figure 1.  

 
 

Figure 1. Graph of the process 
 

The values of stage criteria are given in Table 1. 
 

Table 1: Numerical values 
 

Stage (yt, xt) F1(⋅) F2(⋅) F3(⋅) Stage (yt, xt) F1(⋅) F2(⋅) F3(⋅) 
1 (1, A) 6 120 13 2 (4, G) 6 140 16 
1 (1, B) 8 110 11 2 (4, H) 4 128 20 
1 (2, C) 5 115 14 3 (5, I) 4 102 16 
1 (2, D) 9 117 12 3 (5, J) 3 107 15 
2 (3, E) 5 132 15 3 (6, K) 5 103 12 
2 (3, F) 3 135 14 3 (6, L) 2 101 10 

 

For clarity and due to small size of this illustrative problem, the existing re-
alizations can be written down and numbered from 1 to 16. This numbering is 
presented in Table 2.  
 

Table 2: List of process realizations 
 

No Realization No Realization No Realization No Realization 
1 (1,A,3,E,5,I) 5 (1,B,4,G,5,I) 9 (2,C,3,E,5,I) 13 (2,D,4,G,5,I) 
2 (1,A,3,E,5,J 6 (1,B,4,G,5,I) 10 (2,C,3,E,5,J) 14 (2,D,4,G,5,J) 
3 (1,A,3,F,6,K) 7 (1,B,4,H,6,IK 11 (2,C,3,F,6,K) 15 (2,D,4,H,6,K) 
4 (1,A,3,F,6,L) 8 (1,B,4,H,6,L) 12 (2,C,3,F,6,L) 16 (2,D,4,H,6,L) 

1 

2 

3

4

5

6

7 

8 

A E I

D H L

B F J

C G K

Stage 1 Stage 2 Stage 3
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Applying Algorithm 1 for the criterion F1 we obtain: 
G1 = 19,  D1 = {d13} 

G2 = 18,  D2 = {d5, d14, d15} 
Detailed calculations can be found in Appendix 1.  

 
2.2 MCDM quasi-hierarchical application 
 

We will use the following notation:  
K – number of considered criteria,  
Fk(dt) – k-th stage criterion function (k = 1, …, K),  
Fk(d) − k-th multistage criterion function evaluating process realization d,  
εk – tolerance limit for k-th multistage criterion function.  

We assume that the decision maker in his/her final selection applied the 
quasi-hierarchical approach. For this reason the criteria have been numbered ap-
propriately, starting with the most important criterion, which is assigned the 
number 1. 
 

Algorithm 2  
1. Using Algorithm 1, find the optimal value G1(d) for the most important criterion F1. 
2. Ask the decision maker to determine ε1 for the first criterion. 
3. Using Algorithm 1, create the set: 
                                         D(1) = {d∈D: F1((d) ≥ G1 – ε1}                                 (16) 

containing these realizations of the process which are contained within the toler-
ance interval [G1 – ε1, G1], determined by the DM for the most important criterion.  

4. Set k = 2. 
5. Determine the optimal realization d(k) in D(k-1), with respect to the k-th criterion: 
                                       Fk(d(k)) = max Fk(d): d∈D(k – 1)}                                  (17) 
6. Ask the DM to determine εk for the k-th criterion. 
7. Create the set of realizations D(k):  
                                D(k) = {d∈ D(k – 1): Fk(d) ≥ Fk(d(k)) – ε1 }                            (18) 
8. Set k = k +1.  
9. If k ≤ K, go to Step 5.  
10. Ask the DM to select the final realization from D(K).  
11. End of procedure.  

The algorithm proposed will be illustrated by a numerical example. 
 

Example 2 
Now we regard the considered process as a three-criteria hierarchical process, in 
which the most important is the first criterion, the second-most important is the 
second criterion, and the least important is the third criterion. Numerical values 
of stage criteria are given in Table 1.  
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The determination of the final process realization using the quasi-hierarchical 
procedure described in Algorithm 2 is performed as follows:  
1.  Using Algorithm 1 find the optimal value G1 = 19 for the most important cri-

terion (see Example 1). 
2.  Ask the DM to determine ε1 for the first criterion. The DM set ε1 = 2.  
3.  Using Algorithm 1, find the set:  

D(1) = {d∈D: F1((d) ≥ 17} = {d13, d5, d14, d15, d6, d7} 
4.  Set k = 2.  
5.  Determine the optimal realization in D(1) with respect to the second criterion. 

To do this, we calculate:  
F2(d13) = 359 F2(d5) = 352 F2(d14) = 364 
F2(d15)= 348  F2(d6) = 357 F2(d7) = 341 

From among the values calculated choose the largest one. We have: 
F2(d(2)) = F(d14) = 364 

6.  Ask the DM to determine ε2 for the second criterion. The DM set ε2 = 8.  
7.  Create the set D(2):  

D(2) = {d∈ D(1): F2(d) ≥ 356} = {d14, d13, d6} 
8.  Set k = 3.  
9.  Since k ≤ 3, go to Step 5. 
5.  Determine the optimal realization in the set D(2) with respect to the third cri-

terion. To do this, we calculate:  
F3(d14) = 43  F3(d13) = 44 F3(d6) = 43 

6.  Ask the DM to determine ε3 for the third criterion. The DM set ε3 = 1. 
7.  Create the set D(3):  

D(3) = {d ∈ D(2): F2(d) ≥ 44} = {d14, d13, d6} 
8.  Set k = 4.  
9.  Since k > 3, go to Step 10.  
10. Suggest the selection of the final realization from D3 to the DM. This selec-

tion can be aided by the values of the multi-stage criteria for the following 
process realizations: 

F1(d14) = 18  F2(d14) = 364 F3(d14) = 43 
F1(d15) = 19  F2(d15) = 359 F3(d15) = 44 
F1(d6) = 17  F2(d6) = 357 F3(d6) = 43 

The DM prefers realization d14.  
11.  End of procedure.  
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3 Stochastic case  
 
3.1 i-th expected value and i-th process strategy  
 

We will use additional notation:  
Ft(yt+1⎜yt, xt) – value of stage criterion at stage t for the transition from state yt to 

state yt+1, when the decision taken was xt∈Xt(yt),  
Pt(yt+1⎜yt, xt) – probability of the transition at stage t from state yt to state yt+1, 

when the decision taken was xt∈Xt(yt); the following holds: 

                            
1),|(

11

1)(,1 =∀∀∀ ∑
++ ∈

+∈∈∈
tt

ytttt
y

ttttyxyTt xyyP
Y

XY

                     
 (19) 

{x(y1)} – strategy starting from the state y1 – a function assigning to y1 and each 
state yt∈Yt (t = 2, …, T) exactly one decision xt∈Xt(yt),  

{X(y1)} − set of all the strategies {x(y1)},  
{X} – the set of all strategies of the process under consideration; we have:  

                                                 
{ } ( ){ }1

11

y
y

XX
Y∈

= ∪
                                          

 (20)
 

{x}∈{X} – a strategy starting from any state y1∈Y1,  
G{x} – expected value for strategy {x}:  
 

                                                
{ }

{ } { }
{ }xGxG

x X∈
= max*

                                          
(21)

 
)}({ , tTt yx  – shortened strategy, starting from yt and encompassing stages from t to T,  

)}({ , tTt yX  – set of all shortened strategies, starting from yt and encompassing 

stages from t to T.  
Let us consider strategy )}({)}({ 11 yyx X∈  starting from any state y1. The 

expected value for that strategy is calculated as follows:  
 

Algorithm 3  
1.  For each state yT∈YT calculate:  

                 
∑

++ ∈
++=

11

),|(),|(}){,( 11,
TTy

TTTTTTTTTTTT xyyPxyyFxyG
Y             

(22)
 

2.  For each stage t, 1,1−∈Tt  calculate the expected value: 

   
∑

++ ∈
+++++ +=

11

),|(})){,(),|((}){,( 1,1111,
tty

ttttTtttttttTttt xyyPxyGxyyFxyG
Y  

(23)
 

The expected value G of the strategy )}({)}({ 11 yyx X∈  is equal to 
)})({,( 1,111 yxyG T  

The finite set of all strategies {X} can be divided into M classes so, that: 
                                      {X} = {X1} ∪ {X2} ∪ …∪ {XM}                               (24) 
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where: 

                                            jiji ≠∩ for }{}{ XX                                       (25) 

                                     { }{ } { } }{}{
,,,1

lk
xxMi xGxGilk =∀∀

∈= X…                              (26) 

                                    { } { } { } { } }{}{ ji
xxji xGxGjjii >∀∀∀

∈∈< XX                            (27)  
Gi = F(di) 

Let {x1}∈{X1}, {x2}∈{X2}, …, {xM}∈{XM} and G{X}={G{x1}, …, G{xM}}. 
The i-th expected value is defined as Gi. We have:  
                                                        Gi = G{x i}                                                 (28) 
Each strategy from the set {Xi} is called an i-th strategy.  

The method of determining the i-th expected value and the i-th optimal strat-
egy is described below. 
 

Algorithm 4 
1.  Starting from i = 1 for each yT ∈ YT calculate the i-th expected value:  

              
( ) ( )∑

++ ∈
++

∈
⋅=

11

,|,|max)( 11
)( TTTTT y

TTTTTTTT
yx
iT

i
T xyyPxyyFyG

YX              
(29)

 
and find the set of shortened strategies )}({ , TTT yX , for which this value is 

reached.  
2.  Starting from i = 1 for stage t, 1,1−∈Tt  and each yt ∈ Yt calculate the i-th 

expected value: 

( ) ( )[ ] ( )
⎭
⎬
⎫

⎩
⎨
⎧

=⋅+= ∑
++ ∈

++++
∈ 11

,,1:,|,|max)( 1111
)( TTttt y

TTTTt
j

ttttt
yx
it

i
t ijxyyPyGxyyFyG

YX
… (30)

 
and find the set of shortened strategies )}({ , tTt yX , for which this value is 

reached.  
3. The i-th process value is calculated from the formula: 

                                  ( ){ }1111 ,,,1:max Y∈== yijyGG j
i

i …                         (31) 
4.  The set of all i-th strategies is calculated from the formula:  

                           
{ } ( ){ } ( ){ }ijGyGy ijj

y

i ,,1,: 11
11

…∪ ===
∈

XX
Y                    

(32)
 

Example 3  
We consider a three-stage stochastic decision process. The sets of states for the 
consecutive stages are as follows:  

Y1 = {1,2} Y2 = {3,4}  Y3 = {5,6} 
 

We have the following set of final states of the process:  
Y4 = {7,8} 
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The sets of feasible decisions are as follows:  
X1(1) = {A, B} X2(3) = {E, F} X3(5) = {I, J} 
X1(2) = {C, D} X2(4) = {G, H} X3(6) = {K,L} 

The graph of the process is given in Figure 2. Rectangles denote states of the 
process in the consecutive stages, circles − random nodes. 
 

 
 

Figure 2. Graph of the process 
 

The possible stage realizations of the process, probabilities of their occur-
rence, as well as the values of the stage criteria functions are shown in Table 3. 
 

Table 3: Numerical values 
 

Stage (yt+1⎜yt, xt) P(⋅) F1(⋅) F2(⋅) F3(⋅) Stage (yt+1⎜yt, xt) P(⋅) F1(⋅) F2(⋅) F3(⋅) 
1 (3⎜1,A) 0.4 6 15 22 2 (5⎜4,G) 0.6 5 15 20 
1 (4⎜1,A) 0.6 8 17 14 2 (6⎜4,G) 0.4 6 18 13 
1 (3⎜1,B) 0.7 6 15 22 2 (5⎜4,H) 0.8 5 15 20 
1 (4⎜1,B) 0.3 8 17 14 2 (6⎜4,H) 0.2 6 18 13 
1 (3⎜2,C) 0.5 6 15 22 3 (7⎜5,I) 0.8 5 30 12 
1 (4⎜2,C) 0.5 8 17 14 3 (8⎜5,I) 0.2 1 12 15 
1 (3⎜2,D) 0.8 6 15 22 3 (7⎜5,J) 0.3 5 30 12 
1 (4⎜2,D) 0.2 8 17 14 3 (8⎜5,J) 0.7 1 12 15 
2 (5⎜3,E) 0.5 5 15 20 3 (7⎜6,K) 0.2 5 30 12 
2 (6⎜3,E) 0.5 6 18 13 3 (8⎜6,K) 0.8 1 12 15 
2 (5⎜3,F) 0.3 5 15 20 3 (7⎜6,L) 0.9 5 30 12 
2 (6⎜3,F) 0.7 6 18 13 3 (8⎜6,L) 0.1 1 12 15 

D 

C 

B 

A 

1 

2 

Stage 1 

H

G

F

E

3 

4 

Stage 2 

L

K

J 

I 

5

6

Stage 3 

7 
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For clarity and due to small size of this illustrative problem, the existing 
strategies can be written down and numbered from 1 to 64. This numbering is 
presented in Table 4.  
 

Table 4: List of strategies 
 

No Decision No Decision No Decision No Decision 
1 (A,_,E,G,I,K) 17 (B,_,E,G,I,K) 33 (_,C,E,G,I,K) 49 (_,D,E,G,I,K) 
2 (A,_,E,G,I,L) 18 (B,_,E,G,I,L) 34 (_,C,E,G,I,K) 50 (_,D,E,G,I,L) 
3 (A,_,E,G,J,K) 19 (B,_,E,G,J,K) 35 (_,C,E,G,J,K) 51 (_,D,E,G,J,K) 
4 (A,_,E,G,J,L) 20 (B,_,E,G,J,L) 36 (_,C,E,G,J,L) 52 (_,D,E,G,J,L) 
5 (A,_,E,H,I,K) 21 (B,_,E,H,I,K) 37 (_,C,E,H,I,K) 53 (_,D,E,H,I,K) 
6 (A,_,E,H,I,L) 22 (B,_,E,H,I,L) 38 (_,C,E,H,I,L) 54 (_,D,E,H,I,L) 
7 (A,_,E,H,J,K) 23 (B,_,E,H.J,K) 39 (_,C,E,H,J,K) 55 (_,D,E,H,J,K) 
8 (A,_,E,H,J,L) 24 (B,_,E,H,J,L) 40 (_,C,E,H,J,L) 56 (_,D,E,H,J,L) 
9 (A,_,F,G,I,K) 25 (B,_,F,G,I,K) 41 (_,C,F,G,I,K) 57 (_,D,F,G,I,K) 

10 (A,_,F,G,I,L) 26 (B,_,F,G,I,L) 42 (_,C,F,G,I,L) 58 (_,D,F,G,I,L) 
11 (A,_,F,G,J,K) 27 (B,_,F,G,J,K) 43 (_,C,F,G,J,K) 59 (_,D,F,G,J,K) 
12 (A,_,F,G,J,L) 28 (B,_,F,G,J,L) 44 (_,C,F,G,J,L) 60 (_,D,F,G,J,L) 
13 (A,_,F,H,I,K) 29 (B,_,F,H,I,K) 45 (_,C,F,H,I,K) 61 (_,D,F,H,I,K) 
14 (A,_,F,H,I,L) 30 (B,_,F,H,I,L) 46 (_,C,F,H,I,L) 62 (_,D,F,H,I,L) 
15 (A,_,F,H,J,K) 31 (A,D,F,H,J,K) 47 (_,C,F,H,J,K) 63 (_,D,F,H,J,K) 
16 (A,_,F,H,J,L) 32 (A,D,F,H,J,L) 48 (_,C,F,H,J,L) 64 (_,D,F,H,J,L) 

 
Applying Algorithm 3 for the criterion F1 we obtain: 

G1= 17.128,  {X1} = {x10} 
G2= 17.016,  {X2} = {x2} 

Detailed calculations can be found in Appendix 2.  
 
3.2 MCDM quasi-hierarchical application  
 

We assume again that the decision maker, in his/her final selection, applies the 
quasi-hierarchical approach. For this reason the criteria have been numbered ap-
propriately, starting with the most important one, which is assigned the number 1. 
 

Algorithm 5 
1.  Using Algorithm 4 find the expected optimal value G1 for the most important 

criterion F1. 
2.  Ask the DM to determine ε1 for the first criterion. 
3.  Using Algorithm 1, create the set: 
                                 {X(1)} = {{x}∈{X}: G1{x} ≥ G1 – ε1}                             (33) 

which contains, for the most important criterion (number 1) and for each ini-
tial state y1∈Y1, the strategies which are contained within the tolerance inter-
val [G1 – ε1, G1], given by the DM. 
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4.  Set k = 2. 
5.  Determine strategy {x(k)} in the set {X(k – 1)} which is optimal with respect to 

the k-th criterion: 

                               { } { } { } { }{ })1()( :max −∈= kkkkk xxGxG X                          (34) 
6.  Ask the DM to determine εk for the k-th criterion.  
7.  Create the set of strategies {X(k)}:  
                           {X(k)} = {{x}∈{X(k – 1): Gk{x} ≥ Gk{x(k)} – εk }                      (35)  
8.  Set k = k + 1.  
9. If k ≤ K, go to Step 5.  
10.  Ask the DM to select a strategy from the set {X(K)}.  
11.  End of procedure. 

The algorithm proposed will be illustrated by a numerical example.  
 

Example 4  
Now we regard the considered process as a three-criteria hierarchical process, in 
which the most important is the first criterion, the second-most important is the 
second criterion, and the least important is the third criterion. Numerical values 
of stage criteria are given in Table 1.  

The determination of the final strategy using the quasi-hierarchical procedure 
described in Algorithm 5 is performed as follows:  
1.  Using Algorithm 4 find the expected optimal value G1 = 17.128 (see Example 3) 

for the most important criterion.  
2.  Ask the DM to determine ε1 for the first criterion. The DM set ε1= 0.342.  
3.  Using Algorithm 3, find the set: 

{X(1)} = {{x}∈{X}: G1{x} ≥ 16.585} = 
= {{x10}, {x2}, {x42}, {x14}, {x6}, {x34}, {x46}} 

4.  Set k = 2.  
5.  Determine the strategy {x(2)} in {X(1)} which is optimal with respect to the 

second criterion. To do this, we calculate: 
G2{x10} = 48.94 ,  G2{x2} = 48.376,   G2{x42} = 55.104,   G2{x14} = 49.08 

G2{x6} = 48.568,   G2{x34} = 54.168,  G2{x46} = 56.08 
From among the values found select the largest one. We have: 

G2{x(2)} = G2{x46} = 56.08 
6.  Ask the DM to determine ε2 for the second criterion. The DM set ε2 = 5. 
7.  Create the set of strategies {X(2)}:  

{X(2)} = {{x}∈{X(1} : G2{x} ≥ 51.08} = {{x42}, {x34}, {x46}} 
8.  Set k = 3.  
9.  Since k ≤ 3, go to Step 5. 
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5.  Determine the strategy {x(3)} in {X(2)} which is optimal with respect to the 
third criterion. To do this, calculate: 

G3{x42} = 46,585,  G3{x34} = 47.315,  G3{x46} = 47.315 
From among the values found select the largest one. We have: 

G3{x(3)} = G2{x34} = G2{x46} = 47.315 
6.  Ask the DM to determine ε3 for the third criterion. The DM set ε3 = 1. 
7.  Create the set of strategies {X(3)}:  

{X(3)} = {{x}∈{X(2)} : G3{x} ≥ 46,315} = {{x42}, {x34}, {x46}} 
8.  Set k = 4.  
9.  Since k > 3, go to Step 10.  
10.  Suggest to the DM the selection of the final strategy from {X(3)}. This selec-

tion can be aided by the expected values of the multi-stage criteria which are: 
G1{x42} = 16.97, G2{x42} = 55.104,  G3{x42} = 46,585 
G1{x34} = 16.83, G2{x34} = 54.168, G3{x34} = 47.315 
G1{x46} = 16.83, G2{x46} = 56.08, G3{x46} = 47.315 

The DM prefers strategy {x46}.  
11.  End of procedure. 
 
4 Final remarks 
 

The algorithms presented in this paper, generating the i-th realization of a proc-
ess in the deterministic case and the i-th strategy in the stochastic case have both 
advantages and disadvantages. An advantage of both is that they make it possible 
to generate the consecutive realizations and strategies, respectively. The decision 
maker can determine whether the number of the solutions generated is appropri-
ate with regard to the given tolerance interval. If this number is too small or too 
large, the decision maker can increase or decrease this interval, respectively.  

One can also observe certain disadvantages of the quasi-hierarchical ap-
proach. The first one is the increasing complexity of the generation of the con-
secutive solutions and the need for more resource-intensive calculations. The 
second one is more general and concerns the quasi-hierarchical procedure. An 
important assumption in all scalarization procedures is that the final solution ob-
tained should be an efficient solution. The quasi-hierarchical procedure does not 
guarantee this. In the deterministic case it is possible to test the efficiency of the 
solution obtained and, if this solution is not efficient, to generate efficient solu-
tions better than the solution tested. For the stochastic case, such a procedure has 
not yet been worked out, which suggest a direction for future research. 
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Appendix 1 
 
Stage T = 3  
According to formula (12) we obtain:  
State y3 = 6  
G3

1 (6) = max1 {F3
1(6,K), F3

1(6,L)} = max 1 {5,2} = 5   D33
1(6) = (6, K)  

G3
2 (6) = max1 {F3

1(6,K), F3
1(6,L)} = max 1 {5,2} = 2   D33

2(6) = (6, L) 
State y3 = 5  
G3

1 (5) = max1 {F3
1(5,I), F3

1(5,J)} = max 1 (4, 3} = 4   D33
1(5) = (5, I) 

G3
1 (5) = max2 {F3

1(5,I), F3
1(5,J)} = max 2 (4, 3} = 3   D33

2(5) = (5, J) 
Stage t = 2  
According to formula (13) we obtain:  
State y2 = 4  
G2

1(4) = max1{[F2
1(4,G) + G3

1 (5)], F2
1(4,H) + G3

1 (6)] =  
           = max1 {6 + 4, 4 + 5} = 10   D2,3

1(4) = [(4,G),(5,I)]  
 
G2

2(4) = max2 {F2
1(4, G) + G3

j(5), F2
1(4, H) + G3

k(6): j, k = 1, 2} =  
           = max2{[F2

1(4,G) + G3
1 (5)], [F2

1(4,G) + G3
2 (5)], [F2

1(4,H) + G3
1 (6)],  F2

1(4,H) + G3
2 (6)]} =  

           = max2{6 + 4, 6 + 3, 4 + 5, 4 + 2}= max2{10, 9, 9, 6} = 9   
                                                                              D2,3

2(4) = {[(4,G), (5,J)], [(4,H), (6,K)]} 
State y2 = 3 
G2

1(3) = max1{[F2
1(3,E) + G3

1 (5)], F2
1(4,F) + G3

1 (6)] = max 1 {5 + 4, 3 + 4} = max1 {9, 7} = 9  
  D2,3

1(3) = [(3, E), (5,I)]  
G2

2(3) = max2 {F2
1(3, E) + G3

j(5), F2
1(4, H) + G3

k(6): j, k = 1, 2} =  
           = max2{[F2

1(3,E) + G3
1 (5)], [F2

1(3,E) + G3
2 (5)], [F2

1(3,F) + G3
1 (6)], F2

1(3,F) + G3
2 (6)]} =  

           = max2 {5 + 4, 5 + 3, 3 + 5, 3 + 2} = max2{9, 8, 8, 7}  
                                                                             D2,3

2(3) = {[(3,E), (5,J)], [(3,F), (6,K)]}  
 

Stage 1  
According to formula (13) we obtain:  
State y1 = 2  
G2

1(2) = max1{[F2
1(2,C) + G3

1 (3)], F2
1(2,D) + G3

1 (4)] = max 1 {5 + 9, 9 + 10} =  
           = max1 {14, 19} = 19  
  D1,3

1(2) = [(2,D),(3, E), (5,I)]  
G2

2(2) = max2 {F2
1(2, C) + G3

j(3), F2
1(2, D) + G3

k(4): j, k = 1, 2} =  
             = max2 {[F1

1(2,C) + G2
1 (3)], [F1

1(2,C) + G2
2 (3)], [F1

1(2,D) + G2
1 (4)], F1

1(2,4) + G2
2 (4)]} =  

           = max2 {5+9, 5+8, 9+10, 9+9} = max2{14, 13, 19, 18} = 18  
                                                         D2,3

2(2) = {[(2,D), (4,G), (5,J)], [(2,D), (4,H), (6,K)]}  
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State y1 = 1  
G2

1(1) = max1{[F1
1(1,A) + G2

1 (3)], F1
1(1,B) + G2

1 (4)] = max 1 {6 + 9, 8 + 10} =  
           = max1 {15, 18} = 18  
  D1,3

1(1) = [(1,B),(4, G), (5,I)]  
G2

2(1) = max2 {F1
1(1, A) + G2

j(3), F1
1(1, B) + G2

k(4): j, k = 1, 2} =  
            = max2 {[F1

1(2,C) + G2
1 (3)], [F1

1(2,C) + G2
2 (3)], [F1

1(2,D) + G2
1 (4)], F1

1(2,4) + G2
2 (4)]} =  

           = max2 {6 + 9, 6 + 8, 8 + 10, 8 + 9} = max2{15, 14, 18, 17} = 17  
                                                        D1,3

2(1) = {[(1,B), (4,G), (5,J)], [(1,B), (4,H), (6,K)]}  
1st process value and 1st process realization:  
G1

1 = max1 {G1
1(1), G1

1(2)} = max1{18, 19} = 19  
We have: x1* = 1 and d1 = d1,3

1(2) = [(2,D),(3, E), (5,I)].  
 

2nd process value and 2nd process realization:  
G1

2 = max2 {G1
1(1), G1

2(1), G1
1(2), G1

2(2)} = max2{19, 18, 18, 17} = 18  
D2 = {D1,3

1(1), D2,3
2(2)} = {[(2,D), (4,G), (5,J)], [(2,D), (4,H), (6,K)], [(1,B),(4, G), (5,I)]}  

 
Appendix 2 
 

Stage T = 3  
According to formula (29) we obtain:  
State y3 = 6  
G3

1 (6) = max 1 {F3
1(7|6,K)⋅P3(7|6,K) + F3

1(8|6,K)⋅P3(8|6,K),  
                           F3

1(7|6,L)⋅P3(7|6,L) + F3
1(8|6,L)⋅P3(8|6,L)} =  

            = max 1 ⋅{(5⋅0.2 + 1⋅0.8), (5⋅0.9 + 1⋅0.1)} = max 1 {1.8, 4.6} = 4.6    
   {X3,3

1(6)} = {_, L}  
G3

2 (6) = max 2 {F3
1(7|6,K)⋅P3(7|6,L) + F3

1(8|6,K)⋅P3(8|6,K),  
                           F3

1(7|6,L)⋅P3(7|6,L) + F3
1(8|6,L)⋅P3(8|6,L)} =  

            = max2 {(5⋅0.2 + 1⋅0.8), (5⋅0.9 + 1⋅0.1)} = max 2 {1.8, 4.6} = 4.6    
   {X3,3

2(6)} = {_, K}  
State y3 = 5  
G3

1 (5) = max 1 {F3
1(7|5,I)⋅P3(7|5,I) + F3

1(8|5,I)⋅P3(8|5,I),  
                           F3

1(7|5,J)⋅P3(7|5,J) + F3
1(8|5,J)⋅P3(8|5,J)} =  

            = max 2 ⋅{(5⋅0.8 + 1⋅0.2), (5⋅0.3 + 1⋅0.7)} = max 2 {4.2, 2.2} = 4.2   
   {X3,3

1(5)} = {I, _}  
G3

2 (5) = max 2 {F3
1(7|5,I)⋅P3(7|5,I) + F3

1(8|5,I)⋅P3(8|5,I),  
                           F3

1(7|5,J)⋅P3(7|5,J) + F3
1(8|5,J)⋅P3(8|5,J)} =  

            = max 2 ⋅{(5⋅0.8 + 1⋅0.2), (5⋅0.3 + 1⋅0.7)} = max 2 {4.2, 2.2} = 2.2   
   {X3,3

2(6)} = {J, _}  
Stage t = 2  
According to formula (30) we obtain:  
State y2 = 4 
G2

1(4) = max1 {[F2
1(5|4,G) + G3

1 (5)]⋅P2(5⎜4,G) + [F2
1(6| 4,G) + G3

1(6)]⋅P2(6⎜4,G),  
                          F2

1(5|4,H) + G3
1 (5)]⋅P2(5⎜4,H) + [F2

1(6⎜4,H) + G3
1(5)]⋅P2(6⎜4,H)} =  

               = max1 {(5 + 4.2)⋅0.6 + (6 + 4.6)⋅0.4, (5 + 4.2)⋅0.8 + (6 + 4.6)⋅0.2} = max1{9.76, 9.48} = 9.76  
   {X2,3

1(4)} = {_,G, I, L}  
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G2
2(4) = max2{[F2

1(5|4,G) + G3
1 (5)]⋅P2(5⎜4,G) + [F2

1(6|4,G) + G3
1(5)]⋅P2(5⎜4,G),  

[F2
1(5|4,G) + G3

2 (5)]⋅P2(5⎜4,E) + [F2
1(6⎜4,G) + G3

1(5)]⋅P2(5⎜4,G),  
[F2

1(5|4,G) + G3
1(5)]⋅P2(5⎜4,E) + [F2

1(6⎜4,G) + G3
2(5)]⋅P2(5⎜4,G), 

[F2
1(5|4,G) + G3

2 (5)]⋅P2(5⎜4,E) + [F2
1(6⎜4,G) + G3

2(5)]⋅P2(5⎜4,G),  
[F2

1(5|4,H) + G3
2 (5)]⋅P2(5⎜4,H) + [F2

1(6⎜4,H) + G3
1(5)]⋅P2(5⎜4,H),  

[F2
1(5|4,H) + G3

1 (5)]⋅P2(5⎜4,H) + [F2
1(6⎜4,H) + G3

1(5)]⋅P2(5⎜4,H),  
[F2

1(5|4,H) + G3
2 (5)]⋅P2(5⎜4,H) + [F2

1(6⎜4,H) + G3
2(5)]⋅P2(5⎜4,H),  

[F2
1(5|4,H) + G3

1 (5)]⋅P2(5⎜4,H) + [F2
1(6⎜4,H) + G3

2(5)]⋅P2(5⎜4,H)} =  
           = max2{(5 + 4.2)⋅0.6 + (6 + 4.6)⋅0.4, (5 + 2.2)⋅0.6 + (6 + 4.6)⋅0.4, 

(5 + 4.2)⋅0.6 + (6 + 1.8)⋅0.4, (5 + 2.2)⋅0.6 + (6 + 1.8)⋅0.4, 
(5 + 4.2)⋅0.8 + (6 + 4.6)⋅0.2, (5 + 2.2)⋅0.8 + (6 + 4.6)⋅0.2, 
(5 + 4.2)⋅0.8 + (6 + 1.8)⋅0.2, (5 + 2.2)⋅0.8 + (6 + 1.8)⋅0.2 = 

            = max2{9.76, 8.56, 7.64, 7.44, 9.48, 7.88, 8.76, 7.32} = 9.48 
  {X2,3

2(4)} = {_,H , I, L}  
State y2 = 3  
G2

1(3) = max1{[F2
1(5|3,E) + G3

1 (5)]P2(5⎜3,E) + [F2
1(6| 3,E) + G3

1(5)]⋅P2(5⎜3,E),  
                         [F2

1(5|3,F) + G3
1 (5)]⋅P2(5⎜3,F) + [F2

1(6⎜3,F) + G3
1(5)]⋅P2(5⎜3,F)} =  

           = max1{(5 + 4.2)⋅0.5 + (6 + 4.6)⋅0.5, (5 + 4.2)⋅0.3 + (6 + 4.6)⋅0.7} = max1{9.9,   
                       10.18} = 10.18  
  {X2,3

1(3)} = {F, _, I, L}  
G3

2(3) = max2{[F2
1(5|3,E) + G3

1 (5)]⋅P2(5⎜3,E) + [F2
1(5|4,E) + G3

1(5)]⋅P2(5⎜4,E),  
[F2

1(5|3,E) + G3
2 (5)]⋅P2(5⎜3,E) + [F2

1(5|4,E) + G3
1(5)]⋅P2(5⎜4,E),  

[F2
1(5|3,E) + G3

1 (5)]⋅P2(5⎜3,E) + [F2
1(5|4,E) + G3

2(5)]⋅P2(5⎜4,E),  
[F2

1(5|3,E) + G3
2 (5)]⋅P2(5⎜3,E) + [F2

1(5|4,E) + G3
2(5)]⋅P2(5⎜4,E),  

[F2
1(5|3,F) + G3

2 (5)]⋅P2(5⎜3,F) + [F2
1(5|4,F) + G3

1(5)]⋅P2(5⎜4,F),  
[F2

1(5|3,F) + G3
1 (5)]⋅P2(5⎜3,F) + [F2

1(5|4,F) + G3
1(5)]⋅P2(5⎜4,F),  

[F2
1(5|3,F) + G3

2 (5)]⋅P2(5⎜3,F) + [F2
1(5|4,F) + G3

2(5)]⋅P2(5⎜4,F),  
[F2

1(5|3,F) + G3
1 (5)]⋅P2(5⎜3,F) + [F2

1(5|4,F) + G3
2(5)]⋅P2(5⎜4,F)}=  

           = max2{(5 + 4.2)⋅0.5 + (6 + 4.6)⋅0.5, (5 + 2.2)⋅0.5 + (6 + 4.6)⋅0.5,  
(5 + 4.2)⋅0.5 + (6 + 1.8)⋅0.5, (5 + 2.2)⋅0.5 + (6 + 1.8)⋅0.5,  
(5 + 4.2)⋅0.3 + (6 + 4.6)⋅0.7, (5 + 2.2)⋅0.3 + (6 + 4.6)⋅0.7,  
(5 + 4.2)⋅0.3 + (6 + 1.8)⋅0.7, (5 + 2.2)⋅0.3 + (6 + 1.8)⋅0.7 = 

            = max2{9.9, 8.93, 8.5, 7.5, 10.18, 9.58, 8.22, 7.62} = 9.9  
  {X2,3

2(3)} = {E, _, I, L}  
Stage 1  
According to formula (30) we obtain:  
State y1 = 2  
G2

1(2) = max1{[F1
1(3|2,C)⋅P3(3|2,C) + G3

1 (3)]⋅P2(3⎜2,C) + [F2
1(4| 2,C)⋅P3(4|2,C) +   

                           G3
1(4)]⋅P2(4⎜2,C),  

                          [F2
1(5|2,D)⋅P3(5|2,D)+G3

1 (5)]⋅P2(5⎜2,D) + [F2
1(6⎜2,D)⋅P3(5|2,D) +  

                           G3
1(5)]⋅P2(5⎜2,D)} =  

              = max1{(6 + 10.18)⋅0.5 + (8 + 9.76)⋅0.5, (6 + 10.18)⋅0.8 + (8 + 9.76)⋅0.2} =  
              = max1{16.97, 16.496} = 16.97  
  {X1,3

1(2)} = { _,C, F, G, I, L}  
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G1
2(2) = max2{[F1

1(3|2,C) + G2
1 (3)]⋅P1(3⎜2,C) + [F1

1(4|2,C) + G2
1(4)]⋅P1(4⎜4,C),  

[F1
1(3|2,C) + G2

2 (3)]⋅P1(3⎜2,C) + [F1
1(4|2,C) + G2

1(4)]⋅P1(4⎜4,C), 
[F1

1(3|2,C) + G2
1 (3)]⋅P1(3⎜2,C) + [F1

1(4|2,C) + G2
1(4)]⋅P1(4⎜4,C), 

[F1
1(3|2,C) + G2

2 (3)]⋅P1(3⎜2,C) + [F1
1(4|2,C) + G2

1(4)]⋅P1(4⎜4,C), 
[F1

1(3|2,D) + G2
1 (3)]⋅P1(3⎜2,D) + [F1

1(4|2,D) + G2
1(4)]⋅P1(4⎜4,D), 

[F1
1(3|2,D) + G2

2 (3)]⋅P1(3⎜2,D) + [F1
1(4|2,D) + G2

1(4)]⋅P1(4⎜4,D), 
[F1

1(3|2,D) + G2
1 (3)]⋅P1(3⎜2,D) + [F1

1(4|2,D) + G2
1(4)]⋅P1(4⎜4,D), 

[F1
1(3|2,D) + G2

2 (3)]⋅P1(3⎜2,D) + [F1
1(4|2,D) + G2

1(4)]⋅P1(4⎜4,D)} =  
           = max2{(6 + 10.18)⋅0.5 + (8 + 9.76)⋅0.5, (6 + 9.9)⋅0.5 + (8 + 9.76)⋅0.5,  

(6 + 10.18)⋅0.5 + (8 + 9.48)⋅0.5, (6 + 9.9)⋅0.5 + (8 + 9.48)⋅0.5,  
(6 + 10.18)⋅0.8 + (8 + 9.76)⋅0.2, (6 + 9.9)⋅0.8 + (8 + 9.76)⋅0.2 
(6 + 10.18)⋅0.8 + (8 + 9.48)⋅0.2, (6 + 9.9)⋅0.8 + (8 + 9.48)⋅0.2} =  

            = max2{16.97, 16.83, 16.83, 16.69, 16.496, 16.152, 16.44, 16.216} = 16.83    
                                                            {X1,3

2(2)} = {{ _,C, F, H, I, L}, { _,C, E, H, I, L},}  
State y1 = 1  
G1

1(1) = max1{[F1
1(3|1,A) + G2

1 (3)]⋅P1(3⎜2,C) + [F1
1(4| 1,A) + G2

1(4)]⋅P1(4⎜1,A),  
                        [F1

1(3|1,B) + G3
1 (3)]⋅P1(3⎜1,B) + [F1

1(4⎜1,B) + G2
1(4)]⋅P1(4⎜1,B)} =  

           = max1{(6 + 10.18)⋅0.4 + (8 + 9.76)⋅0.6, (6 + 10.18)⋅0.7 + (8 + 9.76)⋅0.3} =  
           = max1{17.128, 16.654} = 17.128       
  {X1,3

1(1)} = {A, _,F, G, I, L}  
G1

2(1) = max2{[F1
1(3|1,A) + G2

1 (3)]⋅P1(3⎜1,A) + [F1
1(4|1,A) + G2

1(4)]⋅P1(4⎜1,A),  
[F1

1(3|1,A) + G2
2 (3)]⋅P1(3⎜1,A) + [F1

1(4|1,A) + G2
1(4)]⋅P1(4⎜1,A),  

[F1
1(3|1,A) + G2

1 (3)]⋅P1(3⎜1,A) + [F1
1(4|1,A) + G2

2(4)]⋅P1(4⎜1,A), 
[F1

1(3|1,A) + G2
2 (3)]⋅P1(3⎜1,A) + [F1

1(4|1,A) + G2
2(4)]⋅P1(4⎜1,A), 

[F1
1(3|1,B) + G2

1 (3)]⋅P1(3⎜1,B) + [F1
1(4|1,B) + G2

1(4)]⋅P1(4⎜1,B),  
[F1

1(3|1,B) + G2
1 (3)]⋅P1(3⎜1,B) + [F1

1(4|1,B) + G2
1(4)]⋅P1(4⎜1,B),  

[F1
1(3|1,B) + G2

1 (3)]⋅P1(3⎜1,B) + [F1
1(4|1,B) + G2

1(4)]⋅P1(4⎜1,B), 
[F1

1(3|1,B) + G2
1 (3)]⋅P1(3⎜1,B) + [F1

1(4|1,B) + G2
1(4)]⋅P1(4⎜1,B)} =  

           = max2{(6 + 10.18)⋅0.4 + (8 + 9.76)⋅0.6, (6 + 9.9)⋅0.4 + (8 + 9.76)⋅0.6,  
(6 + 10.18)⋅0.4 + (8 + 9.48)⋅0.6, (6 + 9.9)⋅0.4 + (8 + 9.48)⋅0.6,  
(6 + 10.18)⋅0.7 + (8 + 9.76)⋅0.3, (6 + 9.9)⋅0.7 + (8 + 9.76)⋅0.3,  
(6 + 10.18)⋅0.7 + (8 + 9.48)⋅0.3, (6 + 9.9)⋅0.7 + (8 + 9.48)⋅0.3 = 

            = max2{17.128, 17.016, 16.96, 16.848, 16.654, 16.458, 16.546, 16.374} = 17.016  
  {X1,3

2(1)} = {A, _, E, G, I, L}  
According to formula (31) we have:  

G1 = max1 {16.97, 17.128} = 17.128 
G2 = max2 {16.97, 16.83, 17,128, 17.016} = 17.016  

According to formula (32) we have:  
{X1} = {A, _,F, G, I, L} 
{X2} = {A, _, E, G, I, L} 
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