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Abstract 
 

As cancer diseases take nowadays a heavy toll on societies worldwide, 
extensive research is being conducted to provide more accurate diagnoses 
and more effective treatments. In particular, Multiobjective Optimization 
has turned out to be an appropriate and efficient framework for timely and 
accurate radiotherapy planning. 

In the paper, we sketch briefly the background of Multiobjective Optimi-
zation research to Intensity Modulated Radiation Therapy, and next we present 
a rudimentary formulation of the problem. We also present a generic method-
ology we developed for Multiple Criteria Decision Making, and we present 
preliminary results with it when applied to radiation treatment planning. 

 

Keywords: Evolutionary multiobjective optimization, multiple criteria decision making,  
Intensity Modulated Radiation Therapy planning. 
 
1 Introduction 
 

Around the mid 1990s, precise techniques to deliver radiation to malicious tis-
sues became available and then optimization techniques were harnessed to pro-
duce patient treatment plans timely and accurately. This resulted in a flow of re-
search papers on the subject, estimated in several hundreds. About a decade 
later, the multiobjective optimization quite naturally turned out to be an adequate 
framework to represent trade-offs between the goal to irradiate the tumorous re-
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gions of the body with sufficiently high levels of radiation, and the requirement 
to protect healthy organs as much as possible. 

The principle of radiation therapy is as follows. A number of high energy 
beamlets (rays), of order of tens of thousands (depending of the equipment), are 
radiated from a linear accelerator towards a patient positioned on a couch. The 
beamlets deposit radiation doses in the patient’s tissue causing its ionization. 
When the radiation dose is over a certain level, the tissue is killed.  

In the early stage of oncological radiation therapy (in the sequel, for short, 
radiotherapy), conformal radiotherapy was used. In this technique, all points of 
the radiated field receive the same dose and the shape of the field is formed with 
physical reflectors and dumpers (Bortfeld et al., 1994). 

The first delivery using the intensity modulated radiation therapy (IMRT), 
was reported in 1994. From that time clinical evidences have been collected and 
reported in the literature that IMRT is remarkably well suited to multiobjective 
optimization (Küfer et al., 2005; Craft et al., 2012; Breedveld et al., 2012).  
 
2 Intensity Modulated Radiation Therapy 
 

The energy which can be deposited in a tissue by a beamlet is proportional to the 
time the beamlet is radiated. This time is controlled by a collimator – a set of 
iron blades which slide across a rectangular aperture in the radiation head (with 
a linear accelerator inside) with varied speed. When the aperture is fully open, 
all the beamlets carry the same energy. On the other end, when the aperture is 
fully closed, no radiation is emitted. In between, the collimator allows for  
a whole range of radiation energy patterns, called fluency maps. An example of  
a fluency map for 4 ൈ 5 beamlets is given in Figure 1. 

A collection of beamlets radiated from one position is called a beam. The ra-
diation head, mounted on the rotating gantry, can be a source of many beams 
(say 36 beams with a 10° angle step).  

The problem is to produce fluency maps whose superposition kills the mali-
cious (tumor) tissue with the least harm to the organs which have to be espe-
cially protected (Organs At Risk) and limited doses to the normal tissue (not tu-
mor or any OAR) of the patient. This is schematically presented in Figure 2. 
 

     
     
     
     

 

Figure 1. An example of a fluency map for 4 ൈ 5 beamlets. The darker the colour is, the higher 
dose is deposited in a voxel 
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To control the radiation dose deposition in the irradiated region of the pa-
tient’s body, this region is divided into small cubes (say, depending on the accu-
racy required, 2.5 mm ൈ 2.5 mm ൈ 10 mm), called voxels. The radiation dose 
deposited in a voxel by a beamlet radiated for one unit of time is specific to that 
voxel (this is calculated from a physical model) and denoted by ݀௜௝, where ݅ is 
the index of the voxel and ݆ is the index of the beamlet. Thus, the dose deposited 
in voxel ݅ is ݀௜  ൌ ∑ ݀௜௝௝  ௝ is radiation time for beamlet ݆. This can beݔ ௝, whereݔ
represented in the matrix form: ݔܦ ൌ ݀ , 
where ܦ ൌ ൛݀௜௝ൟ is the dose-influence matrix for all beams. Additivity of radia-
tion doses deposited by individual beamlets is the standard assumption in the 
oncology radiotherapy. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. A schematic representation of radiation delivery to tumor and OAR by two beams 
 
3 Multiobjective Optimization in IMRT 
 

The distribution of energy doses to tumor, OARs and normal tissue, is the sub-
ject of optimization. 

The rudimentary multiobjective optimization (specified up to objective func-
tions) model for radiotherapy treatment planning is as follows: ௟݂ሺ݀ሻ  ՜ max  ሺݎ݋ ݉݅݊ሻ   ݈ ൌ 1, … , ݔܦ , ݇ ൌ ݀,                                       ݈௧௨௠௢௥  ൑  ݀௜ ൑ ݅ , ௧௨௠௢௥ݑ  א ௧௨௠௢௥ ,                              (1) ݀௜ܫ  ൑ , ை஺ோ೟ݑ  ݅ א , ை஺ோ೟ܫ ݐ ൌ 1, … , ௜݀ , ݏ ൑ , ௡௢௥௠௔௟ ௧௜௦௦௨௘ݑ  ݅ א  , ௡௢௥௠௔௟ ௧௜௦௦௨௘ܫ

Radiation head – pos. 1 Radiation head – pos. 2 

Tumor 
Organ At Risk 
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where ݔ is the vector of beamlet radiation times, ܫ௧௨௠௢௥, ܫை஺ோ೟ and ܫ௡௢௥௠௔௟ ௧௜௦௦௨௘ 
are the sets of indices of voxels belonging to the respective areas, ݏ is the number 
of OARs. Radiation doses deposited in tumor voxels are bounded from below by ݈௧௨௠௢௥ and from above by ݑ௧௨௠௢௥ . For voxels of OARs and of the normal tissue 
only upper bounds ݑை஺ோ೟  and ݑ௡௢௥௠௔௟ ௧௜௦௦௨௘, respectively, are imposed. 

The interplay between objective function values defines doses delivered to 
the tumor, to OARs and to the normal tissue. Dosed delivered to tumor should be 
maximized and doses delivered to OAR and the normal tissue should be mini-
mized. To fulfil these general goals, various objective functions are used. 

As an alternative, two-sided constraints on doses deposited in tumor voxels 
can be replaced by a weaker requirement, namely that the deviation of the aver-
age dose deposited in a voxel of the tumor from the dose prescribed be within  
a band around zero. 

It should be stressed here that multiobjective optimization models solved for 
optimization of radiotherapy planning are large-scale, with the number of voxels 
reaching hundreds of thousands and the number of beamlets reaching tens  
of thousands. 

As we see from the rudimentary multiobjective optimization model, the only 
element which can differentiate between models are objective functions. In the 
radiology literature there are many objective functions proposed. They can be  
of the statistical type, i.e. describing the dose distributions in organs considered, 
and of the biophysical type, describing the effect of radiation on the radiated 
cells. The latter are as a rule nonlinear. Taking this in mind, and wanting to be 
independent of solvers devoted to a particular class of problems and to have 
freedom to switch from one type of criteria function to another without having to 
pay attention to their analytical properties, one can opt for multiobjective evolu-
tionary optimization (Deb, 2001; Deb et al., 2003; Coello Coello et al., 2002; 
Bokrantz, 2013). Bellow we follow this option. 

However, switching to evolutionary computations, which are in principle 
heuristics with no performance guarantee, one loses a grip on the concept of op-
timality. In the next section, we show how one can cope with this issue. 
 
4 The Proposed Multiple Criteria Decision Making Methodology 
 

For the sake of consistency, we present here the proposed methodology in terms 
specific to radiotherapy planning. However, the method, originally described in 
Kaliszewski et al. (2012), is general and can be applied to any multiple criteria 
decision making problem.  
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Let ݔ denote a vector of beamlet intensities of length ݊ . By the physical inter-
pretation, set ܺ଴ of feasible ݔ is a subset of ܴା௡, the nonnegative orthant of ܴ௡ .  

The underlying Multiobjective Optimization model for Multiple Criteria De-
cision Making is1:                                                               "݉ܽݔ"݂ሺݔሻ,                                                  (2)    
where ݂: ܴା௡ ՜ ܴ௞, ݂ ൌ ሺ ଵ݂, … , ௞݂ሻ, ௟݂ ׷ ܴା௡ ՜ ܴ, ݈ ൌ 1, … , ݇, ݇ ൒ 2, ௟݂ are  
objective functions, “max” denotes the operator of deriving all Pareto optimal 
solutions (in the sense of Pareto) in ܺ଴. 

We assume that Pareto optimal solutions are derived by solving the following 
optimization problem:                                             ݉݅݊௫ఢ௑బ ݉ܽݔ௟ ߣ௟ሺכݕ െ ௟݂ሺݔሻሻ,                                     (3) 
where כݕ is such that ݂ሺݔሻ ൏ ݔ for any כݕ  א  ܺ଴. The set ݂ሺݔሻ, where ݔ are all 
Pareto optimal solutions, is called the Pareto front. 

We have selected optimization problem (3) as a Pareto optimal solution gen-
erator because it has the ability to provide all Pareto optimal solutions2 to  
a given problem, the only condition being the existence of element כݕ (for de-
tails, see e.g. Kaliszewski et al., 2012; Kaliszewski, 2006; Ehrgott, 2005; Mietti-
nen, 1999).  

Under the assumption that all objectives are of the “max” type, for a given ele-
ment כݕ, the optimization problem realizes a line search along the so-called com-
promise half line (Kaliszewski et al., 2012), provided that the compromise half line ݕ ൌ כݕ  െ ,߬ ݐ ߬௟ ൐ 0, ൒ ݐ 0, intersects set ݂ሺܺ଴ሻ, but it yields a Pareto optimal  
solution in any case. This argument is graphically represented in Figure 3. 

The relation between search directions ߬ (called in Kaliszewski et al., 2012 
directions of concessions) and parameters ߣ in the objective function of optimi-
zation problem (2), is given by formula:                                                   ߣ௟ ൌ ሺ߬௟ሻିଵ, ݈ ൌ 1, … , ݇.                                                   (4) 

All components of search directions ߬௟ are positive, hence ߣ௟ ൐ 0, ݈ ൌ 1, … , ݇ 
(Kaliszewski et al., 2012). 

Formula (4) establishes a clear relationship between technical parameters ߣ in 
the optimization problem (3), and the realm of decision making where vectors of 
concessions ߬ are easily interpretable. Indeed, vector ߬ represents a simple form 
of preference carrier which can be used to encapsulate the radiotherapy plan-
ner’s (in general: the decision maker’s) preferences3. 

                                                 
1  For the sake of brevity of presentation we assume here that all objectives are of, or are con-

verted to, the “max” type. 
2  In fact, this optimization problem provides a characterization of weakly Pareto optimal solu-

tions, but for the problems considered in this work such a distinction is immaterial.  
3  For the complete treatment of this problem see: Kaliszewski (2006); Ehrgot (2005); Miettinen (1999). 
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where Gy (gray) is a unit of radiation dose, SPINE and JAW are OARs, | · | de-
notes the cardinality of a set. The first objective function represents the average dose 
per voxel deposited in the tumor, and this value has to be maximized. The second 
objective function represents the maximum of doses deposited in voxels of two or-
gans to be spared, namely spine and jaw, and this value has to be minimized. 

It is worth observing that even for the size of the largest problem it was pos-
sible to derive an approximation of the whole Pareto front (in Figure 4, to be 
consistent with multiobjective optimization model (2), the second objective 
function is multiplied by −1 and maximized). To our best knowledge, solving 
multiobjective optimization problems of such sizes have not been reported in the 
literature. The only paper which discusses the issue of solving large-scale mul-
tiobjective optimization problems by evolutionary computations is Antonio, 
Coello Coello (2013). However, that paper presents results for artificial test 
problems scalable to any size. The paper reports solving problems with up to 
5000 variables and only box constraints. 

With elements of Pareto front approximations derived, we are able to apply 
our methodology, as outlined in Section 4. Let us illustrate how it can work with 
the largest problem solved for the Head & Neck cancer case. We can proceed ac-
cording to two scenarios. Both scenarios are hypothetical because the prelimi-
nary results we have obtained are of no real clinical value. Radiotherapy plans 
with the IMRT technique applied to patients involve at least five beams. There-
fore the results we have obtained so far are to be regarded only as a proof of the 
concept. 
 

 
 

Figure 4. A Pareto front approximation of Head & Neck tumor case with three beams 
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Decision making scenario 1 
 

Let us regard the approximation of the Pareto front derived as an accurate repre-
sentation of the Pareto front, sufficient for radiotherapy planning. 

Presenting 76 elements of the Pareto front to the radiotherapy planner (medi-
cal physicist) or the oncology physician leaves him unsupported.  

Here comes the proposed multiple criteria decision making methodology presented 
in Section 4. We calculate element ݕ௟כ ൌ ሻݔሼ௉௔௥௘௧௢ ௙௥௢௡௧ሽ ௟݂ሺא ௫ݔܽ݉  ൅ ,ߝ  ߝ ൐0, ݈ ൌ 1,2, and for ߝ ൌ 0.5 (selected arbitrarily) we get כݕ ൌ ሺ35.71, െ49.15ሻ. 

For selected vectors of concessions ߬, using formula (4) we can find, in the 
76-element representation of the Pareto front, the element with the minimal 
value of the objective function in problem (3). With ߬ representing the decision 
maker’s preferences, the selected elements correspond best to those preferences 
(in the sense of the objective function in problem (3)).  

Table 1 presents selected elements for five vectors ߬ (in the table vectors ߬ 
are normalized). To be consistent with the assumption made in Section 4, the 
second objective function was converted to the “max” type by multiplication of 
its values by -1. 
 
 

Table 1: Selected elements for a pair of vectors ߬ 
 ߬ଵ ߬ଶ ଵ݂ሺݔሻ ଶ݂ሺݔሻ ܮଵሺ߬, ܵ௅ሻ ܮଶሺ߬, ܵ௅ሻ 

0.1 0.9 35.21 -50.36 35.21 -53.15 
0.25 0.75 35.18 -50.30 35.16 -50.30 
0.5 0.5 34.85 -49.52 34.84 -49.52 

0.75 0.25 34.13 -49.18 34.13 -49.18 
0.90 0.10 33.98 -49.15 31.21 -49.15 

 
Table 1 also provides bounds on solutions of problem (3) which would be de-

rived if problem (3) was solved with a given ߬. It is of interest to note, that, in 
full accordance with the methodology, in some cases lower bounds on compo-
nents can be higher than components of minimizers of the objective in problem 
function (2). For example, for ߬ ൌ ሺ0.1, 0.9ሻ, the lower bound on the second 
component is −53.15, whereas the second component of the element derived for 
that ߬ is −53.36. 
 
Decision making scenario 2  
 

Let us regard the approximation of the Pareto front derived as an inaccurate rep-
resentation of the Pareto front, insufficient for radiotherapy planning. In that 
case we can use it as a shell ܵ௅ (see Section 4) to calculate lower bounds on 
components of unknown ݂ሺݔሻ, selected implicitly by DM’s preferences repre-
sented by vectors ߬. For example, in Figure 4 there is a region not well covered 
by elements of ܵ௅ in the segment ሾെ50.00, 49.80ሿ of the horizontal axis. We can 
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probe that region with the compromise half line with ߬ ൌ ሺ0.34,0.66ሻ. Without 
solving problem ሺ3ሻ we get lower bounds for the solution of this problem for ߣ௟ ൌ  ሺ߬௟ሻିଵ, ݈ ൌ 1,2, as shown in Table 2. In this way, we can probe any frag-
ment of the Pareto front. 

We could also get an upper bound for this solution, but for this aim we would 
need an upper approximation ܣ௎. As the problem considered here has no clinical 
value and is used here as an illustration, we did not calculate upper bounds. But 
for more realistic, hence larger problems, we will calculate two-sided bounds 
which is a reasonable way to avoid solving problem (3) explicitly. 
 

Table 2: Two-sided bounds 
 ߬ଵ ߬ଶ ଵ݂ሺݔሻ ଶ݂ሺݔሻ ܮଵሺ߬, ܵ௅ሻ ܮଶሺ߬, ܵ௅ሻ 

0.34 0.66 unknown unknown 35.06 -49.92 

 
6 Concluding Remarks and Direction of Further Research 
 

This paper reports on our efforts to establish practical connections between multi-
objective optimization and radiotherapy planning. To this aim we are strongly 
supported by cooperating radiotherapy planners who: 
1)  have shown deep interest in the issue, 
2)  provided us with clinical data, 
3)  verify results of our computations, 
4)  declare to use our results in clinical practice if we provide comparative or better 

results than those produced by treatment planning systems currently in use. 
The preliminary results we have obtained indicate that problems with a lim-

ited number of beams, but nevertheless large-scale problems, can be solved with 
general purpose Evolutionary Multiobjective Optimization methods, where the 
solution takes the form of a (hopefully fair) representation of the Pareto front. 
That is a novelty in the literature on the multiobjective optimization. 

As radiotherapy plans quality increases with the increasing number of beams, 
we expect that the derivation of representations of the whole Pareto front, given 
a reasonable time budget, will not be possible. In fact, we have never intended to 
propose this. Instead, with the relation (4) the radiotherapy planner is in the posi-
tion to direct the derivation of radiotherapy treatment plans to the regions of the 
Pareto front of his/her direct interest. To arrive at a feasible and Pareto optimal 
treatment plan, the planner has to compromise on unattainable values of compo-
nents of כݕ and he/she can easily do so in terms of vectors of concessions. 

Encapsulation of preferences in terms of vectors of concessions is a simple 
but sufficient tool to interface the decision making realm with optimization en-
gines, the latter of no or little interest for a general decision maker. The approach 
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and tool we propose and advocate sets a very low cognitive barrier for entering 
into Multiple Criteria Decision Making. In radiotherapy planning, where plan-
ners (medical physicists by profession) work in the regime of daily routines, un-
der stress and time pressure to deliver patient radiation plans timely, this is a key 
factor for the successful adoption of the multiple criteria perspective.  

However, the ultimate goal, as it is suggested by radiotherapy practitioners 
we cooperate with, should be to actively include physicians-oncologists, who are 
the last and decisive link in the decision making chain, in the multiple criteria 
decision making processes. For this aim, a low cognitive barrier to enter will be 
of paramount importance. 

Providing clean radiotherapy data, in formats suitable for optimization, requires  
a great amount of work. It has taken us two years to produce preliminary results. In 
addition, some physical models have been built to provide data, which cannot be oth-
erwise obtained from commercial systems currently in operation in oncology centres.  

We would like to stress again that the approach to multiple criteria decision 
making outlined in this paper, being general, is applicable to any problem with 
multiobjective optimization as the underlying model. It has been already suc-
cessfully applied to problems in engineering design (Kaliszewski et al., 2015) 
and to the airport gate assignment problem (Kaliszewski et al., 2013). 
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