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Abstract 

 

Planning is one of the most important aspects of project management. 
A project plan defines objectives, activities and timeframe for project re-
alization. To be able to define the required timeframe for project realiza-
tion it is important to prepare its schedule.  

The purpose of this paper is to present the project scheduling problem 
as a multiple criteria decision making problem and to solve it using two 
evolutionary algorithms: SPEA2 and an evolutionary algorithm driven by 
the fuzzification of Pareto dominance. A comparison of these two ap-
proaches is conducted to investigate if it is reasonable to use the fuzzifica-
tion of the Pareto dominance relation in evolutionary algorithms for the 
multiple criteria project scheduling problem. 

 

Keywords: fuzzy Pareto dominance, project scheduling problem, multiple criteria  
optimization, evolutionary algorithms. 
 
1 Introduction 
 

A company’s success depends on how it adapts to the changes in its current dy-
namic environment. Changes are conducted under pressure of time and cost and 
with limited access to the resources. Those changes should be managed as pro-
jects. In the current environment, when companies have to adapt to changes 
quickly, the number of projects conducted in companies is increasing. We can 
say that currently more than 25% of companies’ activities should be managed as 
projects (Brilman, 2002). This is the case in such areas as engineering or IT. Pro-
jects managed properly lead to situations when companies’ goals are met on time 
within the assumed budget and with limited resources. 
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One of the most important phases of project management is project planning. 
Scheduling is one of the most important elements of a project plan. The most 
popular techniques used by companies for project scheduling are CPM and 
PERT which provide schedules optimal in terms of time. In real-life applications 
a project schedule should be optimized also in terms of other elements such as 
resources or cash flows generated in the project. 

The multiple criteria project scheduling problem is not frequently discussed 
in the literature.  

An example of describing and solving the multiple criteria project scheduling 
problem is presented in Viana, de Sousa (2000). The authors have considered  
a resource constrained problem whose objectives are: minimization of the pro-
ject completion time, minimization of project delay, and minimization of the vio-
lation of resource constraints. They have presented two multiple objective tech-
niques to solve this problem: Pareto Simulated Annealing and Multiple 
Objective Taboo Search.  

Also Hapke et al. (1998) considered the multiple criteria project scheduling 
problem. They have described a problem using four components: the set of re-
sources R, the set of activities Z, the set of precedence relationships on Z, and 
the set of objectives C. The project scheduling problem is a problem of alloca-
tion of resources from the set R to activities from the set Z, so that all activities 
can be completed, constraints can be met and the best compromise between the 
objectives from C is reached. The authors have considered a problem with three 
criteria: project cost minimization, project delay minimization, and resource us-
age optimization. To solve the problem, Pareto Simulated Annealing was used in 
the first stage and the interactive local search method was used to identify the fi-
nal solution from the set of solutions obtained in the first stage. 

The multiple criteria project scheduling problem is also considered in 
Krzeszowska (2013). The author has proposed a mathematical model with three 
objectives: minimization of penalty for project delay, minimization of the cost of 
additional resource usage, and maximization of NPV. The problem was solved in 
two stages. In the first stage the SPEA2 algorithm was used to find the set of 
non-dominated solutions. In the second stage an interactive method was used to 
identify the final solution from the set of solutions obtained in the first stage. 

Another example is described in Leu et al. (1999). The authors have consid-
ered a resource constrained problem with three objectives: time, cost, and re-
source usage optimization. The problem is solved in two stages. In the first stage 
a compromise between time and cost is considered and resources are allocated to 
the project. In the second stage resource leveling is applied. 
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In the present paper the multiple criteria project scheduling problem is consid-
ered. Three objectives are taken into account: minimization of the penalty for project 
delay, minimization of the penalty for resource over-usage, and maximization of NP. 
The problem is solved with the fuzzy dominance-driven evolutionary algorithm. The 
results obtained are compared with the result obtained by the SPEA2 algorithm. 
 
2 Multiple criteria project scheduling problem 
 
We consider a project for which a schedule should be prepared. By scheduling 
we understand setting the start and finish times for each activity of the project. 
We are looking for a schedule which meets constraints and is the best compro-
mise between the objectives. 

For the problem described above the following assumption have been made: 
− the project consists of J activities j = 1,…,J, 
− the project has been described on an AON network (Activity On Node – 

using this type of network allows to use all precedence relationship types), 
− each activity is described by three elements: duration, type and amount  

of required resources, cash flows generated by each activity, 
− deterministic time is considered, 
− if the project is finished with delay, a penalty is foreseen for each unit of delay, 
− cash flows are generated at activity completion, 
− only renewable resources are constrained (with the assumption that the 

amount of nonrenewable resources is sufficient to complete the project), 
− we consider internal resources available for the project and external resources 

whose usage leads to penalty. 
The following notation is used: 

J – number of all activities of the project (j = 1,…,J), 
T – number of all time units (t = 1,..,T), 
K – number of renewable resources (k = 1,…,K), 
FJ − project completion time, 
LFJ − project completion time defined by the decision maker, 
ZJ − penalty for unit of project delay, 
cfj – net cash flows generated by activity j, 
α – discount rate, 
xjt – decision variable, 
dj – duration of activity j, 
Fj – completion time of activity j, 
Fi – completion time of predecessor i, 
Sj – start time of activity j, 
Si – start time of predecessor i, 
rjk – amount of kth resource required by activity j, 
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Rkt – amount of kth resource available at time unit t (both internal and external), 
w
ktR  − amount of kth internal resource available at time unit t, 

Vk − penalty for using external renewable resources, 
AI

j, AII
j, AIII

j, AIV
j – predecessors of activity j (precedence relationships are as fol-

lows: finish to start, start to start, start to finish, finish to finish). 
A multiple objective model for the project scheduling problem can be 

formulated as follows: 
Objectives 

                                       min}0,max{ →⋅− JJJ ZLFF                               (2.1) 

                         
min]]}0,)([max{[

1 1 1
→⋅−⋅∑ ∑ ∑

= = =
k

T

t

K

k

J

j

w
ktjtjk VRxr

               
(2.2)

 

                                               
max

1

→⋅∑
=

−
J

j

F
j

jecf α

                               
(2.3)

 
Constraints 

                                                         xjt = {0,1}                                       (2.4) 

                                                  
j

T

t
jtJj

dx =∧ ∑
=

= 1,...,1                                        
(2.5)

 

                                                   
)(max

,..,1 jtTtj xtF ⋅=
=                (2.6) 

                                            
1)(min

,..,10
−⋅=∧

=≠ jtTtjx
xtS

jt            (2.7) 
                                                        Fj = Sj + dj               (2.8) 
                                               Sj ≥ Fi  (i∈ AI

j)           (2.9) 
                                               Sj ≥ Si  ( i∈ AII

j)                (2.10) 
                                              Fj ≥ Si  (i∈ AIII

j)                (2.11) 
                                              Fj ≥ Fi  (i∈ AIV

j)                 (2.12) 

                                      
ktjt

J

j
jkTtKk

Rxr ≤⋅∧∧ ∑
=

==
)(

1,...,1,...,1
                                

(2.13)
 

The purpose of the criterion function (2.1) is to minimize the penalty for project 
delay. Delay is defined as a situation in which the project finishes later than it was 
assumed by the decision maker. If the decision maker did not provide a due date for 
project completion, then delay is calculated with respect to the latest finish time 
using the critical path method (CPM). The purpose of criterion (2.2) is to leverage 
resource usage. The project has its own resources available, but if needed, it can use 
other resources in the company; using those resources, however, leads to penalty. 
The criterion function (2.3) describes NPV maximization.  

Constraint (2.4) defines a binary decision variable. This decision variable is 
equal to 1 when activity j lasts in time t, otherwise it is equal to 0. Each activity 
can be performed only once, and its duration is defined by (2.5). Equations (2.6) 
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and (2.7) are used to calculate the activity completion and start time, 
respectively. An activity which has started cannot be stopped until it is 
completed (2.8). The lines (2.9)-(2.12) define precedence relationships  
of various types and (2.13) is the resource availability constraint. 
 
3 Fuzzy Pareto dominance and fuzzy ranking 
 

The subset of all vectors of a set A which are not dominated by any other vector 
of A is the Pareto set. The Pareto set for univariate data (single objective) 
contains solely the maximum of the data (Köppen et al., 2005).  

Given two vectors a and b we say that a (Pareto-) dominates b when each 
component of a is less than or equal to the corresponding component of b, and at 
least one component is smaller: 

                              )()( kkiiD bakbaiba <∃∧≤∀↔> .               (3.1) 
The fuzzification of the Pareto dominance relation is given by the following 

definition: 
We say that vector a dominates vector b with degree µa given by the formula: 
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and that vector a is dominated by vector b with degree µp given by the formula: 
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The definition of Fuzzy Pareto Dominance is illustrated in Figure 1. 
 

 
 

Figure 1. Definition of Fuzzy Pareto Dominance  
 

Source: Based on: Köppen et al. (2005). 

b = (0.7, 0.2)

a = (0.1, 0.8)
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Of the two vectors a = (0.1, 0.8) and b = (0.7, 0.2), vector a dominates vector 
b with degree: 

25.0
8.01.0
2.01.0),( =

⋅
⋅

=baaμ ,
 

and vector a is dominated by vector b with degree: 

143.0
2.07.0
2.01.0),( ≈

⋅
⋅

=bapμ .
 

We may use these dominance degrees to rank the elements of a set A of mul-
tivariate data (vectors) such as the fitness values of a multiple objective optimi-
zation problem. 

Each element of A is assigned the maximum degree of being dominated by 
any other element of A: 

                                             
),(max)(
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= .                                    (3.4)

 
Next, the elements of A are sorted in increasing order according to the rank-

ing values. 
 
4 Comparison of the Fuzzy Pareto Dominance-Driven Evolutionary  

Algorithm with the SPEA2 algorithm 
 

The fuzzy Pareto dominance-driven algorithm has been developed on the basis 
of the SPEA2 (Strength Pareto Evolutionary Approach 2) algorithm, which is an 
elitist algorithm. As research shows (Zitzler, 1999), elitism in evolutionary algo-
rithms can improve the results obtained. 
 
4.1 Evolutionary algorithm scheme 
 

The SPEA2 algorithm consists of the following steps (Zitzler et al., 2001): 
 

Input: 
N – population size, 
N  – size of external set, 
G − maximum number of generations. 
 

Output: 
A − set of non-dominated solutions. 
 

Step 1: Initialization  
The initial population P0 is generated and an empty external set 0P  is created. 

Step 2: Performance  
Fitness assignment is performed for individuals from the sets P0 and 0P . 
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Step 3: Selection and external set updating  
All non-dominated solutions are copied from the sets gP  and Pg to the set 1+gP .  

Step 4: Termination 
If the stopping criterion is satisfied then set A is a set of decision vectors repre-
sented by the non-dominated individuals in 1+gP  .  

Step 5: Mating selection 
A tournament selection with replacement on 1+gP  to fill the mating pool is con-
ducted. 

Step 6: Variation 
Genetic operators are applied to individuals from the mating pool. The popula-
tion Pg+1 is the result of the variation. 
 
4.2 Characteristics of the algorithm 
 

The fuzzy Pareto dominance-driven evolutionary algorithm differs from the 
SPEA2 algorithm in two respects: performance and environmental selection.  

In the SPEA2 algorithm the performance F(i) is calculated using the follow-
ing equation: 

                                               )()()( iDiRiF += .                                         (4.1) 
At first a strength value S(i) is assigned to each individual. It represents the 

number of individuals that the individual i dominates: 

                                   |}|{|)( jiPPjjiS gg ;∧+∈= .                              (4.2) 
Then a raw fitness of individual i is calculated: 
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Individuals are discriminated from each other using density information. The 
density estimation technique is an adaptation of the k-th nearest neighbor method 
(Silverman,1986), where the density at any point is a (decreasing) function  
of the distance to the k-th nearest data point. For each individual the distances (in 
objective space) to all individuals in archive and population are calculated and 
stored in a list. Once the list is sorted in increasing order, the k-th element gives 
the distance sought, denoted by k

iσ . 
The density is defined by: 

                                                 2
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+
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i
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Individuals with the fitness value F(i) lower than 1 are non-dominated. 
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In the fuzzy Pareto dominance-driven evolutionary algorithm a ranking of all 
individuals is calculated (according to the scheme described in section 3). After 
assigning to each element of A the maximum degree of being dominated by any 
other elements of A, we sort the individuals in increasing order: 

                                            
),(max)(

}\{
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∈
= .                               (4.5)

 
The higher the position in the ranking, the better the individual performance. 
The next aspect in which the SPEA2 algorithm and the fuzzy Pareto domi-

nance-driven evolutionary algorithm differ is environmental selection. 
In the SPEA2 algorithm the individuals are selected to the external set 

according to the following rule: 

                                   }1)(|{1 <∧+∈=+ iFPPiiP ggg .                      (4.6) 
If 1+gP  is larger than the external set, it is reduced; if it is smaller, it is filled 

with dominated individuals from gP  and Pg.  
In the fuzzy Pareto dominance-driven evolutionary algorithm the first N indi-

viduals from the ranking are copied to the external set. No additional set reduc-
tion or selection of individuals to the external set is required. 
 
4.3 Other elements of algorithm 
 
Individual 
 

Binary variables are used in the scheduling problem described in section 2.  
In this paper an individual is a binary matrix with J rows and T columns. Activi-
ties are presented in rows and time units are presented in columns. The individ-
ual i can be presented as follows:  
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For the initial population only feasible solutions are generated.  

 

Crossover 
 

A crossover process proposed in this paper is conducted in two phases. In the 
first phase the individuals for which crossover will be performed are randomly 
chosen from the population and the crossover point is chosen, also randomly. 
The crossover point is the row number. In the second stage the chosen row is ex-
changed between the two individuals.  
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Mutation 
 

In the proposed solution, mutation is a process of delaying a randomly chosen 
activity. The activity is delayed by one time unit. 
 
Constraints considering 
 

The mathematical model presented in section 2 contains constraints which 
should be taken into account in the algorithm. In the approach proposed in this 
paper a penalty is foreseen for each not feasible solution. The penalty makes the 
individual performance dramatically worse, to reduce the probability of such in-
dividual reproduction. 
 
5 Experimental results 
 

In this section the fuzzy Pareto dominance-driven evolutionary algorithm will be 
used to solve an example of the multiple objective project scheduling problem. 

A project consisting of 13 activities (Figure 2) is to be scheduled. 

 
Figure 2. AON network for the example 
 

Source: Prepared by the author. 
 

For each activity a deterministic duration is given (Table 1). For the realiza-
tion of the project two resource types are required: k1 and k2. The amount of re-
sources required by each activity is given in Table 1. The availability of resource 
k1 is restricted and equal to 1 units in the project and to 2 in the company (in 
each time unit). The availability of resource k2 is restricted and equal to 3 units 
in the project (in each time unit) and to 5 in the company. For each activity the 
cash flows generated by it are determined. 
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Table 1: Data for the example 
 

Activity Duration Resource k1 requirement Resource k2 requirement Net cash flows 
1 4 1 3 -2000 
2 9 1 2 -1000 
3 10 0 3 -2000 
4 8 0 3 -1000 
5 13 0 2 -2000 
6 8 1 1 -2000 
7 4 0 2 2000 
8 5 0 3 4000 
9 13 1 2 6000 

10 12 1 2 8000 
11 10 0 2 10000 
12 12 1 0 12000 
13 10 1 5 15000 

 

The following parameters have been set for computations: 
− Population size: 10 individuals, 
− Crossover probability: 90%, 
− Mutation probability: 10%,  
− Number of generations: 100, 
− Size of external set: 5. 

After 100 generations the following set has been obtained (Table 2): 
 

Table 2: Set of solutions after 100 iterations of the fuzzy Pareto  
dominance-driven evolutionary algorithm 

 

Solution 
Objective 1 

(min) 
Objective 2 

(min) 
Objective 3 

(max) 
1A 1 500 144 7 537 
2A 1 300 152 19 891 
3A 1 100 150 8 334 
4A 1 100 150 8 633 
5A 1 100 141 8 846 

 

The solutions are ordered according to their ranking, so we can assume that 
the first solution is the best one. Its maximum value with which this solution is 
dominated by the other solutions in this set is the smallest. During the analysis of 
these solutions, we can conclude that: 
− solution 1A is dominated by solution 5A,  
− solution 3A is dominated by solutions 4A and 5A,  
− solution 4A is dominated by solution 5A. 

Solutions 2A and 5A are non-dominated. 
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In the next step we have performed 100 iterations of the SPEA2 algorithm 
and the following solutions have been obtained (Table 3). 
 

Table 3: Set of solutions after 100 iterations of SPEA2 
 

Solution 
Objective 1 

(min) 
Objective 2 

(min) 
Objective 3 

(max) 
1B 1 300 152 19 891 
2B 1 000 151 12 256 
3B 700 169 14 955 
4B 1 100 156 13 702 
5B 1 100 141 8 846 

 
Comparing Tables 2 and 3 we can see that solution 1B is identical with 2A 

and solution 5B, with 5A. Solutions 1A, 3A and 4A are dominated by 2A and 
5A, but not by 2B, 3B and 4B. 

Now we will mutually compare all solutions using fuzzy Pareto dominance 
(Table 4). 
 

Table 4: Comparison of all solutions 
 

Solution max 
1A 0.0017629 

2A, 1B 0.0015279 
3A 0.0012928 
4A 0.0012928 

5A, 5B 0.0012928 
4B 0.0012928 
2B 0.0011753 
3B 0.0008227 

 

From Table 4 we can see that solutions 2B, 3B and 4B identified by the 
SPEA2 algorithm but not by the fuzzy Pareto dominance-driven algorithm are 
on the last 3 positions in the fuzzy ranking. What is interesting, solutions 1A, 3A 
and 4A are dominated by solutions 2A (1B) and 5A (5B), but solutions 2B, 3B 
and 4B are not dominated by solutions 2A (1B) and 5A (5B). Comparing 
solutions 1A, 3A and 4A with solutions 2B, 3B and 4B we are unable to find any 
dominance relationship between them. 
 
6 Summary 
 

In this paper a project scheduling problem has been described as a multiple ob-
jective decision making problem. It has been solved using the fuzzy Pareto 
dominance-driven evolutionary algorithm. 
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Applying fuzzy Pareto dominance in an evolutionary algorithm seems to 
make the performance of the individuals and environment selection (also selec-
tion to the external set) better. Additionally, thanks to the fuzzy ranking scheme 
it is clear which solution should be chosen as the final one – we should always 
choose the highest-ranking solution. In other evolutionary algorithms for multi-
ple objective problems we obtain a set of solutions, and then we should choose 
one of them. In the case of the SPEA2 algorithm we can choose any solution 
from the set of solutions with the objective function F(i) lower than 1, as those 
are non-dominated solutions. 

Both algorithms ended with similar solutions, and even though some papers 
report that the evolutionary algorithm using fuzzy Pareto dominance is more ef-
fective (Köppen et al., 2005), it is difficult to conclude the same from the present 
paper. This may be caused by the small size of the example presented in this 
paper and that is why additional experiments should be conducted. Therefore, in 
a future study a larger example will be considered. 
 
Acknowledgments 
 

This research was supported by National Science Centre on basis of the decision 
number DEC-2012/07/N/HS4/02736. 
 
References 
 
Brilman J. (2002), Modern Management Methods (Nowoczesne koncepcje i metody zarzadzania), 

Polish Economic Publishing, Warsaw. 
Hapke M., Jaszkiewiecz A., Słowiński R. (1988), Interactive Analysis of Multiple-criteria Project 

Scheduling Problems, European Journal of Operational Research, 107, s. 315-324. 
Köppen M., Franke K., Nickolay B. (2005), Fuzzy-Pareto-Dominance Driven Multiobjective Ge-

netic Algorithm [in:] Evolutionary Multi-Criterion Optimization, Vol. 3410, Springer. 
Krzeszowska B. (2013), Three Step Procedure for a Multiple Criteria Problem of Project Portfolio 

Scheduling, Operations Research and Decisions, No 4. 55-74. 
Leu S.S., Yang C.H. (1999), Ga-based Multicriteria Optimal Model for Construction Scheduling, 

Journal of Construction Engineering and Management, 125(6), 420-427. 
Viana. A., de Sousa J.P. (2000), Using Metaheuristic in Multiobjective Resource Constrained Pro-

ject Scheduling, European Journal of Operational Research, 120, 359-374. 
Zitzler E. (1999), Evolutionary Algorithms for Multiobjective Optimization: Methods and Applica-

tions, PhD Thesis, Swiss Federal Institute of Technology, Zurich. 
Zitzler E., Laumanns M., Thiele L. (2001), SPEA2 Improving the Strength Pareto Evolutionary Ap-

proach, Technical Report 103, Computer Engineering and Communication Networks Lab (TIK), 
Swiss Federal Institute of Technology (ETH) Zurich, Gloriastrasse 35, CH-8092 Zurich. 


