
M U L T I P L E   C R I T E R I A   D E C I S I O N   M A K I N G  
 

Vol. 14                                                                                                                                          2019 
 

 
 
 
Tea Vizinger* 

Janez Žerovnik** 
 
 
 

ROBUST OPTIMISATION METAHEURISTICS  
FOR THE INVENTORY-ALLOCATION PROBLEM 

 
DOI: 10.22367/mcdm.2019.14.08 

 
Abstract 

 

As an example of a successful application of a relatively simple 
metaheuristics for a stochastic version of a multiple criteria optimisation 
problem, the inventory-allocation problem is discussed. Stochastic 
programming is introduced to deal with the demand of end consumers. It has 
been shown before that simple metaheuristics, i.e., local search may be a very 
competitive choice for solving computationally hard optimisation problems. 
In this paper, robust optimisation approach is applied to select more 
promising initial solutions which results in a significant improvement of time 
complexity of the optimisation algorithms. Furthermore, it allows more 
flexibility in choosing the final solution that need not always be minimising 
the sum of costs. 

 

Keywords: robust optimisation, local search, stochastic programming, distribution. 
 
1 Introduction 
 

New metaheuristics paradigms are introduced and are getting popular in recent 
years and in recent decades because NP-hard problems provide challenging 
optimisation tasks (Talbi, 2009; Aarts and Lenstra, 1997; Sorensen et al., 2016). 
Despite of the dramatic increase of available computational power, the need for 
heuristic methods remains because also the size of practical problems to solve 
increases. While it is widely accepted that the most successful heuristics are 
those that use the very properties of a particular problem and the domain, it is 
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not so commonly believed that simple metaheuristics are expected to be 
overperfoming the more complicated ones (for further discussion, see Žerovnik, 
2015, 2003). In the talk given by one of the authors at the 8th International 
Workshop on Multiple Criteria Decision Making, arguments and examples were 
provided supporting the claim. A very general theoretical argument (Ferreira and 
Žerovnik, 1993) is that any local search asymptotically outperforms the often 
used heuristic simulated annealing (Kirkpatrick et al., 1983), on any problem (!). 
We mention here three examples. The first example of a simple local search type 
heuristic is the “remove and reinsert” heuristic that has been applied to the 
traveling salesman problem (Brest and Žerovnik, 1999), the probabilistic 
traveling salesman problem (Žerovnik, 1995), the resource-constrained project 
scheduling problem (Pesek et al., 2007) and the job shop scheduling problem 
(Zupan et al., 2016). The second example is the Petford-Welsh algorithm 
(Petford and Welsh, 1989), a heuristic for graph 3-colouring based on the 
antivoter model (Donelly and Welsh, 1983), that has later been applied to 
various generalised colouring problems including the k-colouring (Žerovnik, 
1994), frequency assignment (Ubeda and Žerovnik, 1997), and very recently to 
the clustering problem (Ikica et al, 2019). For details of the close relation of the 
Petford-Welsh algorithm to the Boltzman machine and the simulated annealing 
algorithm, see Žerovnik (2000). The last example that will be elaborated in more 
detail in this paper is the application of local search heuristics to the inventory- 
-allocation problem.  

The rest of the paper is organised as follows. Inventory allocation in a supply 
chain is introduced in section 2. In section 3, the formal definition of the 
problem is given and the robust optimisation approach that extends our previous 
heuristics is described. The new approach allows a sizeable improvement in 
computation speed, as shown by the results of a computational experiment on  
a realistic example described in section 4. Conclusions are given in section 5. 
 
2  Inventory allocation in a supply chain  
 
A typical retail supply chain consists of one or several warehouses that distribute 
products to several stores, which have to deal with stochastic demand patterns. 
The idea is to align the decisions, reflecting the ordering policies that in retail 
companies are usually taken independently by several decision makers. On the 
one hand, we are dealing with warehouse managers, whose orders are naturally 
based on the price and availability of a product. On the other hand, we have store 
managers, whose orders are usually based on the actual requirements of the 
merchant. The ordered quantities from the external suppliers depend therefore on 
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the stock market prices and not on the actual requirements. Of course there are 
many situations with higher or lower stock levels, causing overstocking effects 
or lost sales (state of stock-out with possible lower sale realisation).  

In our previous research paper (Vizinger and Žerovnik, 2019) we have 
presented the idea of an on-going optimisation approach. In this approach we 
first find a tactical plan and then (re)define some strategic and operational 
decisions. Tactical planning for a chosen period (month, season, etc.) defines the 
appropriate inventory levels in warehouses and stores, and consequently the 
allocation of resources among retail facilities. The replenished quantities are 
defined on the operational level using the difference between the actual 
inventory and the pre-defined maximum level of a certain store inventory. Since 
the tactical plan already determines the necessary stock levels, the demand of the 
warehouses becomes more or less deterministic. With precise tactical planning, 
retailers may be able to contract constant supply quantities, which may result  
in a lower unit price and the corresponding higher profit. At the stores’ side  
of the supply chain, precisely pre-defined inventory levels prevents stock 
accumulation, which may result in increased product quality and a related 
customer service level.  

The model for product flow coordination in a retail supply chain that was 
introduced in Vizinger and Žerovnik (2019) considers optimisation of three 
criteria (distribution costs, overstocking effects and lost sales). While the costs 
are estimated on the basis of the expected demand, only the distribution cost can 
be calculated for the quantities predicted. On the other hand, both types of 
supply risk (overstocking effects and lost sales) are unknown a priori. Although 
the last two cannot appear at the same time (they are mutually exclusive), it is 
reasonable to deal with each of the three costs separately. On the one hand, we 
consider a single-item lot sizing problem and, on the other hand, a resource 
allocation problem. The stochastic model introduced in Vizinger and Žerovnik 
(2019) is the first that tackles the coordination problem at the tactical level of 
planning. The inventory-allocation problem may be seen as a generalized 
material flow problem, where the goal is to minimise the distribution costs of 
goods delivered from some supply points to a number of destination points 
(Anholcer, 2016). Below we refer to the combined inventory-routing problem, as 
there exist similarities to our inventory-allocation problem.  

For the inventory-routing problem, the literature introduces mostly the use of 
mixed integer optimisation, multi-objective optimisation and stochastic 
programming (e.g., Liu and Papageorgiou, 2013; Grossman and Guillén- 
-Gosálbez, 2010). The idea is to find an appropriate policy with minimal costs of 
distribution, minimal overstocking effects and maximal customer service level. 
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Liu and Papageorgiou (2013) interpret customer service level as the percentage of 
customer demand satisfied on time. Lower customer service level therefore causes 
lost sales or lost customers, and this results in profit loss of the supply chain.  

Most of the applied stochastic models are two-stage programs, and are used 
to deal with demand uncertainties when assigning probability distributions 
(Franca et al., 2010). A stochastic transportation problem may be transformed 
into a deterministic one by removing the demand constraints, which are used to 
introduce a new cost function related to the expected extra cost (resulting in  
a difference between the delivered amount and the actual demand). Although 
risk is measured in our paper with the cost metric, the direct and indirect costs 
should not be summed up, because they have a totally different origin. As 
opposed to the well-known lot-sizing models or the Newsvendor approach (for 
coordination of the supply chain flow), we are not limited to use only a simple or 
a weighted sum of the criteria considered.  

Beside stochastic programming and heuristics solution procedures, Grossman 
and Guillén-Gosálbez (2010) introduce robust optimisation and probabilistic 
programming. In many cases we are not able to identify the underlying 
probability distributions or such a stochastic description may simply not exist 
(Sarimveis et al., 2008). In such a situation it is reasonable to fit a suitable 
probability distribution for each parameter based on an expert’s subjective 
knowledge derived from past experiences and feelings. Uncertain data are 
therefore unknown but bounded quantities, while constraints are satisfied for all 
realisations of the uncertain parameters. In robust programming, not every 
scenario represents a feasible solution. Once an uncertainty is realised, the 
solution obtained from robust optimisation ensures that constraints are satisfied 
with a certain probability.  

The optimisation problem that arises from the model is a computationally 
hard problem. For time prohibitive stochastic programs, the use of heuristic 
approaches (which provides good feasible solutions) have become very popular. 
Several versions of the local search heuristics were adopted in Vizinger and 
Žerovnik (2019), including iterative improvement (a basic form of local search), 
tabu search and threshold accepting. The best performance was shown by the 
tabu search heuristic that proved to provide very good solutions on the instances 
tested. However, the computational time for a single product instances of 
moderate size is considerable. Even though these calculations are to be 
performed only occasionally, it is important to have a faster method if possible.  
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3  Formal definition of the problem 
 
We represent the coordination problem for a retail supply chain product flow as 
a multi-objective discrete optimisation problem. A typical retail supply chain 
consists of one or several warehouses ݅ ∈ (1, … ,   who deliver products to (ܫ
a number of stores ݆ ∈ (1, … ,  ௜௝ is theݔ where ݀ܿ௜௝ is the distribution cost, and ,(ܬ

quantity of the product distributed. There are two types of vertices: ܽ௜ represents 
a given fixed supply available at each origin or warehouse, and ܥ௝ represents  

a fixed inventory holding capacities of stores. In addition, we are given the 
demand of the stores as random variables ௝ܾ. In other words, we model the 
customers’ shopping habits with random variable ௝ܾ with some probability 

distribution that is not known a priori. Here we consider discrete distributions 
and assume that we are given hypothetical distributions based on past experience 
(managers’ knowledge, information from the system) and/or intuition.  

A feasible solution ܺ is given by the matrix ܺ =  ௜௝൧௜∈ூ,௝∈௃, (1)ݔൣ

where ݔ௜௝ is the amount transferred from warehouse ݅ to store ݆. A solution ܺ is 
feasible if it satisfies the inventory holding capacity of stores ܥ௝, and complies 

with the supply available at each origin or warehouse ܽ௜.  
A possible sale realisation is represented by the scenario, described by vector ܮ = ൣ ௝݈൧, where ݈ is the fixed scenario realised at store ݆. 

 
3.1  Optimisation criteria 
 
Given a scenario ܮ, the cost of overstocking effects ܱܵ is calculated as: ܱܵ(ܺ, (ܮ =෍(෍ݔ௜௝௜ − ௝݈) ∙ ܿைௌ௝  (2)

and the cost of lost sales ܵܮ is defined as:  ܵܮ(ܺ, (ܮ =෍( ௝݈ −෍ݔ௜௝௜ ) ∙ ܿ௅ௌ௝ . (3)

In (2) and (3), ܿைௌ	is the cost of overstocking effects for a unit of product at 
store ݆, and ܿ௅ௌ is the cost of lost sales for a unit of product at store ݆. Here we 
can optimise only the expected values because the optimisation criteria depend 
on the a priori unknown values of the future sales. The expected cost of 
overstocking effects is represented as the weighted sum of the costs over all 
scenarios:  ܧ(ܱܵ(ܺ)) =෍(ܮ)݌ ∙ ܱܵ(ܺ, ௅,(ܮ  (4)
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where (ܮ)݌	is the probability of scenario ܮ. Similarly, for the expected cost of 
lost sales:  ((ܺ)ܵܮ)ܧ =෍(ܮ)݌ ∙ ,ܺ)ܵܮ ௅(ܮ . (5)

As indicated in Introduction, the relationship between the decision criteria is 
often represented by a (weighted or simple) sum of criteria. However, when 
defining the general mathematical model, we wish to consider the multi- 
-objective optimisation problem in a more general and somewhat more natural 
way. The stochastic model and experimental study are described in detail in 
Vizinger and Žerovnik (2019). Note that the goal function to be minimised in the 
local search procedure was defined at first as a sum of the criteria. Simple local 
search heuristics have been shown to provide near optimal solutions of very 
good quality in a reasonable time (Vizinger and Žerovnik, 2019, 2018). 
Nevertheless, when larger instances and, in particular, when more products are 
considered, the computational time may be large, therefore we adopted the 
robust optimisation approach in order to restrict attention to a subset of 
promising feasible solutions. In short and roughly speaking robust optimisation 
here means that we attempt to speed up the optimisation procedure by focusing 
first on the two criteria modelling the risk and considering the third criterion 
only in the case when the first two are within reasonable bounds. In this way, 
costly optimisation of the distribution cost that involves linear programming is 
avoided. The optimisation criteria remain the same, but the set of feasible 
solutions and thus potential Pareto optimal solutions is reduced to those which 
have bounded risk costs. A preliminary report on this research, the robust 
optimisation approach for tactical planning of a retail supply chain product flow 
was announced in an extended abstract by Vizinger, Kokolj and Žerovnik 
(2017). Here we outline the entire solution procedure and test the model on 
a real-life instance. 
 
3.2  Robust optimisation 
 
A robust optimisation approach is performed in four consecutive steps (see 
Figure 1), where we first generate an initial solution (having at most some 
percent of lost sales or overstocking effects realisation). After examination of  
a limited number of testing scenarios, we iteratively seek solutions with minimal 
supply risks. For the set of best solutions (with minimal supply risk) we evaluate 
the distribution costs. This approach is closely related to robust programming, at 
least as regards the generation of scenarios. Moreover, the objective function to 
be minimised is no longer in the form of a sum of all three costs (as is the case in 
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the exact solution approaches and previously used heuristics), but the criteria are 
rather placed in the hierarchy way. This allows us to exclude time prohibitive 
linear programming from the iterative improvement, which greatly speeds up the 
heuristic solution procedures. 
 

 
 

Figure 1: Four steps of a robust optimisation approach 
 
3.2.1  Generating an initial solution 
 
At first, an initial solution (or, it may be known from past experience) is 
generated at random. Let us assume that we know the future sales (in reality, 
actual demand is known a posteriori), given in a vector ௝݈ = ൣ0, … , ௝݈(݉)൧, where ௝݈(݉) represents the last possible (maximal) sold quantity at store ݆. Each ௝݈ is 

assumed to take a limited number of values, and so may take the maximal 
possible value as does the maximal past sale (defined with the random variable ௝ܾ). Recall that the possible sale realisation is given by a scenario described in 
vector ܮ = ൣ ௝݈൧, where ݈ is the quantity needed at store ݆. 

As indicated above, we first generate a scenario ܮ and use ܺ(ܮ) as the initial 
solution. Here ܺ(ܮ) is the optimal solution of the linear problem solving the 
deterministic transportation problem corresponding to scenario ܮ. A solution ܺ 
represents the distribution plan given in a matrix, presented in expression (1). 
 
3.2.2  Robust conditions 
 
In contrast to the previous approach (see Vizinger and Žerovnik, 2019), the 
initial solution ܺ is further checked for coincidence with the specified robust 
criteria (maximum allowable supply risks). In particular, here this means that the 
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initial solution must allow at most 25% of overstocking effects and/or with at 
most e.g. 30% of lost sales realisation. If the solution generated does not fit,  
a new solution is generated at random, until a feasible fitting solution is obtained. 
Note that if we assume that the probability distributions of ܮ are given by 
(independent) random realisations of the random variables ௝݈ (defined by ௝ܾ), the 

probability of a scenario ܮ is clearly:  (ܮ)݌ =ෑ݌(݆, ݈)௝ . (6)

We calculate the expected overstocking effects for the solution generated 
initially as well as for the last possible solution (maximal distributed quantities). 
If the ratio of ܧ൫ܱܵ(ܺ)൯ for the solution tested to ܧ൫ܱܵ(ܺ)൯	for the last possible 
solution is less than some pre-defined percentage (for example 25%), we may, 
with reasonable confidence, accept the solution generated initially. Furthermore, 
we may search for feasible solutions with at most e.g. 30% of lost sales, where 
we consider the ratio of ܧ൫ܵܮ(ܺ)൯ for the tested solution to ܧ൫ܵܮ(ܺ)൯ for the 
first possible solution (having minimal distributed quantities). Note that 
solutions with higher probability for sales realisation are more likely to be 
generated. 
 
3.2.3  Tabu search 
 
The iterative improvement phase proceeds along the lines of our previous 
experiments, i.e. the tabu search heuristic is applied because this procedure had 
the best performance when several local search based heuristics were tested (see 
Vizinger and Žerovnik, 2019, 2018). Tabu search generates a random neighbour 
(random selection of a store and a random change of the amount to be 
delivered), and moves to the new solution based on the difference in the goal 
function. The goal function is improved if it is minimised compared to the 
objective function value of the previous solution. The objective function to be 
minimised is represented here as a sum of supply risks ܧ൫ܱܵ(ܺ)൯ +  .൯(ܺ)ܵܮ൫ܧ
The best known solutions are reported as the final results.  
 
3.2.4  Evaluation of the solutions 
 
For the solutions with minimal supply risks we then solve a linear program and 
evaluate the distribution costs ܥܦ(ܺ). The preferred solution may be the one 
that appears most often in the set of solutions (with minimal supply risks): 
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min௑∈ఞ ቀܧ൫ܱܵ(ܺ)൯ + ൯ቁ, (7)(ܺ)ܵܮ൫ܧ

or the one with minimal total costs (trade-off between the direct and indirect 
costs): min௑∈ఞ ቀܧ൫ܥܦ(ܺ)൯, ൫ܱܵ(ܺ)൯ܧ + ൯ቁ. (8)(ܺ)ܵܮ൫ܧ

The choice of the best solution depends on the decision-maker’s requests and 
preferences. If we are selling a product of higher value, the retailer would 
naturally like to minimise the supply risks costs and he might choose the 
solution obtained with equation 7. On the other hand, if we are selling a product 
of lower value, we would like for the solution to have minimal total costs (so we 
may sum up the costs in equation 8). If a highly demanded product with a rather 
low value is under investigation, we want the solution with minimal different 
types of costs (thus we observe separate direct distribution costs and indirect 
supply risks as presented in equation 8). We wish to stress that we have more 
options and the right one should be chosen on the basis of the decision maker’s 
preferences. 

Finally, in the robust optimisation approach we check the best solutions 
whether they satisfy the inventory holding capacities of stores ܥ௝, and whether 

they do not exceed the supplies available at each origin or warehouse ܽ௜. If none 
of the solution is feasible, we check the next set of the best solutions from the 
tabu search solution procedure. 

 
4  Numerical example 
 
The numerical example deals with the distribution of a non-substitutable 
perishable product from the fruit and vegetable program, i.e., bananas. Retailers 
usually sells products through stores of multiple formats; in our analysis we 
focus on the largest store format: megamarket. We assume that megamarkets 
have the most complete and well maintained databases regarding stocks, orders, etc.  

The idea of this analysis is to set up a tactical plan for the selected sub-season 
of the chosen summer season. Actual sales data were statistically analysed and 
we found out that there are eight selling seasons (for the banana sales) and each 
of these we may further divide into at least three sub-seasons. In the selected 
summer season (July-August) we distinguish four sub-seasons (Monday- 
-Wednesday, Thursday, Friday-Saturday, Sunday). In our example we set up  
a tactical plan for Fridays and Saturdays of the selected summer season. 

The retailer distributes bananas between two warehouses and several 
hundreds of stores (we focus on 18 megamarkets and disregard other store 
formats). The chosen product (bananas) is packed into basic units (packages), 
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each weighting 18 kg. We assume that transportation between warehouses and 
stores is provided once per day, and that the stores may order only a whole 
number of packages, as a package is a basic transportation unit. For a unit of 
product (package) we use cost estimates (in €) for daily distribution (transport, 
warehouse) and supply risks (overstocking effects, lost sales). Costs are 
estimated on the basis of the interviews with practitioners from the company: ܿ = €0.02/package/km, ℎ௪ = €0.25/package/day, ℎ௦ = €0.5/package/day, ܿைௌ = €5/package/day, and ܿ௅ௌ = €6/package/day. We also estimate 
entries ݀௜௝ of the distance matrix (in km) which are used to calculate the 

transportation costs ൫ܿ௜௝ = ܿ ∙ ݀௜௝൯. Note that the distribution cost (storing and 
transportation) from warehouse ݅ to store ݆ per unit is computed to be: ݀ܿ௜௝ =ܿ௜௝ + ℎ௪ + ℎ௦.  

Sales are recorded in kilograms of product sold. Because only whole numbers 
of packages can be distributed, kilograms into packages have to be converted 
first. Since one package of bananas weights approximately 18 kg, we cannot fill 
the distribution classes with integers only, but need to divide them, e.g., into 
quarter, half, three-quarter and an entire package. For the case of megamarket 13 
the sales distribution for Fridays and Saturdays of the summer season is shown 
in Figure 2. As we can see, megamarket 13 will sell up to ten packages of 
bananas in the chosen sub-season, and most probably it will sell between six and 
eight packages per day. Similar results hold true for other stores. When defining 
demand distributions we found out that all the stores considered have 20 to 75 
sales possibilities (demand classes), and there are 8.6 ∙ 10ଶ଻ possible scenarios 
or sales realisations in total. 

For the stochastic model we have first tested the basic local search solution 
procedures (iterative improvement, tabu search, threshold accepting and  
a combination of all three) and showed that they are very efficient when 
addressing the inventory-allocation optimisation problem (Vizinger and 
Žerovnik, 2019, 2018). The convergence curve of the tabu search heuristic is 
shown in Figure 3 (note that here the objective function is represented by the 
sum of all three criteria). Since the tabu search turns out to be the most reliable 
among all the heuristics tested, we integrated this solution procedure into the 
robust optimisation approach. Instead of optimisation of the sum of criteria, we 
optimise the goal function that is defined as follows. First we optimise the cost 
of risk, which is the sum of two criteria: the expected lost sale cost and the 
expected overstock cost. Only feasible solutions with low cost of risk are then 
considered and their transportation costs are computed. Of course, we might 
optimise the criteria in some other way (hierarchy); for some systems it is 
perhaps important to minimise only the overstocks in the first stage of the 
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optimisation procedure. Therefore, we may argue that the final decision about 
the importance of the criteria should be made by the decision makers and that 
their interactive involvement is definitely desirable.  
 

 
 

Figure 2: Example of a probability distribution for Fridays and Saturdays of the summer season 
 

In the robust optimisation approach we first generate a scenario ܮ, and use ܺ(ܮ)	as the initial solution, where ܺ(ܮ) is the optimal solution of the linear 
program solving the deterministic transportation problem corresponding to 
scenario ܮ. For the initial solution we first check if it coincides with the 
capacities and limitations of the warehouses and stores. For the initial solution, 
the first possible (minimal distributed quantities) and the last possible scenarios 
(maximal distributed quantities) we calculate the supply risks and check the 
robust conditions. In our case we request that the solution have at most 30% of 
the expected overstocking effects, as well as at most 30% of expected lost sales. 

The robust optimisation approach was run 10 times for 1000 iterations. 
Figure 4 represents the iterative solution procedure (note that here the objective 
function is represented by the sum of expected overstocks and expected lost 
sales). As we can see, the expected supply risks amount up to €209 (€105 for 
overstocks and €104 for lost sales). The best solution from the tabu search 
procedure (without considering a robust 4-step approach) corresponds to the 
scenario with supply risk costs that amount up to €223.3 (€44.7 for overstocks 
and €178.6 for lost sales). Regarding the minimisation of supply risks, the 
criteria hierarchy definitely outperforms the simple tabu search procedure that 
uses only a simple or weighted sum of all criteria.  
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Figure 3:  Convergence curve of the tabu search solution procedures (for a realistic case).  
The cost is the sum of expected risk costs and the distribution cost 

 
For the best ten solutions (from the iterative improvement) we solve the 

linear program and evaluate the distribution costs. It turns out that the best 
solution with at most 30% of overstocking effects and at most 30% of lost sale 
realisations corresponds to the solution with total costs of €708 (distribution 
costs and supply risks). Nevertheless, although this solution has higher total 
costs by approximately €41 in comparison to the solution from the tabu search 
with the sum of the criteria (see also Figure 3), it has lower supply risk costs. 
Supply risks are also much more balanced (1:1 as compared to the previous 
result 1:4). The solution obtained by the robust optimisation approach  
is represented by matrix ܺ, with 2 rows (2 warehouses) and 18 columns  
(18 megamarkets): 

 ܺ = ቂ12.5 10.5 17.750 0 0 				9.75 22.75 14.00 0 0 				 0 8.25 012.0 0 6.75				8.5 0 00 25.25 11.0				 0 0 10.07.5 7.75 0 				11.0 20.25 9.750 0 0 ቃ 
 

From the distribution plan we see that the first warehouse should supply most 
of the megamarkets and the second warehouse, megamarkets 7, 9, 11, 12, 13 and 
14. In the case of megamarket 13 we note that the appropriate stock level for 
Fridays and Saturdays of the summer season is seven and a half packages, while 
with the previous approach we have obtained six and a half packages. Note that 
we can distribute only a whole number of packages, so in this case we would 
distribute the difference between the needed level (the result from tactical 
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planning) and the actual stock level, rounded up to the closest integer. We see 
that with the robust optimisation approach the distributed quantities are higher, 
as are also distribution costs and overstocking effects. As opposed to this, the 
costs of lost sales are lower and, most importantly, the costs of supply risk are 
balanced. The solution obtained can be also called a balanced or compromised 
solution. 

 
 
Figure 4:  Convergence curve of a robust optimisation approach (for a realistic case).  

The cost is the expected risk costs 
 

Algorithms have been implemented in a Python environment (the code was 
not optimised). Search runs were done on an Intel Xeon E3-1230 v3 (8M Cache, 
3.3 GHz) processor. For the experimental case of 100 stores, 10 demand classes, 
8 initially selected solutions and with 10 000 tabu search iterations performed 
for each solution, the basic tabu search computation (without considering  
a robust 4-step approach) took 40 minutes, and the robust computation took 
roughly 15 seconds. With the incorporation of robust criteria and criteria 
hierarchy, we have significantly increased the computation speed. Here we need 
to note that computational time increases when the number of stores changes, 
while the number of demand classes does not affect significantly the complexity 
of the problem.  
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5  Conclusion 
 
This paper presents the robust optimisation approach for the inventory-allocation 
problem, which is appropriate for tactical planning of a retail supply chain 
product flow. We have considered a product whose sales figures are independent 
from those of other products. First, we randomly generated an initial solution 
(representing a distribution plan with defined inventory levels and allocation of 
resources), having at most some pre-defined percent of supply risk realisation 
(robust conditions). Then we used a tabu search algorithm to search for solutions 
with minimal supply risks (overstocking effects and lost sales). In a previous paper 
we have shown that local search, the most basic metaheuristics, is a very competitive 
choice. In fact, the tabu search was shown to be very efficient, therefore we have 
incorporated this solution procedure into the robust optimisation approach.  

The initial solution was further evaluated by taking into the account also the 
distribution costs assessments. It was shown that exclusion of time prohibitive 
linear programming from the iterative improvement solution procedure greatly 
speeds up the computations. Therefore, the implementation that improves 
separately the distribution cost and the cost of risks is definitely reliable and also 
allows interactive decision making (e.g. defining robust criteria or choosing an 
appropriate cost function for optimisation). 

From the general introductory discussion, we can conclude that the example 
discussed here is another argument supporting the claim that simple (meta)heuristics 
are usually a competitive choice when solving hard optimisation problems.  

There are many interesting directions for future research. First of all, we will try 
to upgrade the model to deal with the distribution plans of the substitutable products. 
Of course, the optimisation problem will be harder, therefore we might also consider 
possible improvements of the heuristic solution procedure. For future research we 
also left out the natural extension that would include a dynamical self-adapting 
mechanism. Here the comparative model for the operative planning is one of the 
interesting research avenues, where the distribution quantities are going to be 
defined with a difference between an actual inventory and the pre-defined maximum 
level of a certain inventory (resulting from tactical planning). 
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