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Abstract

A novel application of the generalized traveling salesman is pro-
posed. The practical problem considered is optimization of different
optimization criteria in various models of a mixed assembly worksta-
tion. Several models that give rise to interesting optimization problems
are discussed.

Keywords: generalized traveling salesman problem, flexible assembly workstation.

1 Introduction

The generalized traveling salesman problem (GTSP), also known as the
‘travelling politician problem’, deals with ‘states’ that have (one or more)
‘cities’ and the salesman has to visit exactly one ‘city’ from each ‘state’. In
analogy with the traveling salesman problem, it is natural to consider the
problem on directed graphs.

The definition of the generalized traveling salesman problem (TSP) be-
low, based on Nobert and Laporte (1983) and Noon and Bean (1991), is as
follows. Let G = (V, E) be an n-node graph whose edges are associated with
non-negative costs. We will assume w.l.o.g. that G is a complete graph (if
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there is no edge between two nodes, we can add an edge with an infinite or
large enough cost).

We denote the cost of an edge e = (i,j) € E by ¢(i,j). It is usual to
allow different costs depending on the direction of the edge. The GTSP is
called symmetric if and only if the equality ¢(7,j) = ¢(j,7) holds for every
two nodes ¢,j € V.

Let Vi,...,V, be a partition of V into p subsets called clusters (i.e.
V=ViuWhUu..UV,and V,NV; =0 forall ¢,k € {1,...,p}, k # ¢). The
GTSP asks for finding a minimum-cost tour H spanning a subset of nodes
such that H meets each cluster V;, i € {1,...,p}. The problem involves two
related decisions: choosing a node subset S C V, such that |S N V| > 1,
for all kK = 1,...,p and finding a minimum cost Hamiltonian cycle in the
subgraph of GG induced by S. Formally,

GENERALIZED TRAVELING SALESMAN PROBLEM, GTSP

Input: A graph G = (V, E) with weighting function ¢ : E — Ry,
and a partition Py = {V1,Va,..., V,}, where V;NV; =0
for all ¢ # j, and U2, V; = V.

Question: Find a cycle in G that contains a vertex from each set V;
such that its weight is minimal.

Here, Ry denotes the set of non-negative real numbers.

Clearly, TSP is a special case of GTSP, where each of the clusters has
exactly one element, |V;| = 1. There are also several variations, for example
asking for a cycle that must contain either exactly one or at least one vertex
of each cluster, or allowing instances in which the sets V; are not disjoint.

In this short note, we propose a new application of the generalized trav-
eling salesman. The practical problem considered is to optimize various
optimization criteria in various models of a mixed assembly workstation.
It has motivated definition of several optimization problems that generalize
the GTSP. The main contribution of this paper are definitions of the models
that are, to the best of our knowledge, new in the area of application. The
problem formulations may provide firm ground for future studies that will
include development of heuristics and case studies on industrial applica-
tions. While, on one hand, the new applications may be of interest because
they motivate further theoretical studies of related optimization problems,
we believe that, on the other hand, the transfer of theoretical results directly
to engineering studies and industrial applications is even more important.

The rest of the paper is organized as follows. In the next section we
recall some related work. The number of sources cited is large because we
wish to serve readers with both theoretical and practical expertise and in-
terests. However, the material touches several popular research areas and
therefore the section does not aim to be a comprehensive survey. Section 3
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provides some details of the application that is currently a hot topic in the
development of smart factories within industry 4.0 (and 5.0). The main
contribution, elaboration of several models and related optimization prob-
lems is given in Section 4. In the last section we include conclusions and
discuss some ideas for future work.

2 Related work

Regarding the complexity of GTSP, it is well known that the (asymmetric)
generalized traveling salesman problem can be transformed into a standard
asymmetric traveling salesman problem with the same number of cities, and
a modified distance matrix (Noon and Bean, 1993). Therefore, the asym-
metric generalized traveling salesman problem is NP-hard. More precisely,
it has been proved (Sahni and Gonzalez, 1976) that assuming P#NP, no
polynomial-time TSP heuristic can guarantee A(I)/OPT(I) < 2P(N) for
any fixed polynomial p and all instances I. Better approximation results
hold for the TSP with triangle inequality. Classical result of Christofides
provides a 3/2-approximation algorithm for symmetric TSP (Christofides,
1976). It is not known whether the factor 3/2 is the best possible, however,
assuming P#NP, there exists an € > 0 such that no polynomial-time TSP
heuristic can guarantee A(I)/OPT(I) <1+ ¢ for all instances I satisfying
the triangle inequality (Arora et al., 1992). As ATSP is a generalization of
TSP, it is at least as hard as TSP. Very recently, a constant factor approx-
imation for ATSP with triangle inequality has been developed by Svensson
et al. (2020).

A number of practical applications of GTSP are given in Laporte et al.
(1996) and (www 2). One application is encountered in ordering a solution
to the cutting stock problem in order to minimize knife changes. Another
is concerned with drilling in semiconductor manufacturing, see e.g., U.S.
Patent 7,054,798 (www 2). Further examples listed in Laporte et al. (1996)
include the covering tour problem, material flow system design, post-box
collection, stochastic vehicle routing and arc routing. GTSP is also called
the ‘Set TSP problem’ (www 1) or Equality Generalized Traveling Sales-
man Problem (E-GTSP) (Helsgaun, 2015). Furthermore, it should be noted
that the same or very closely related problems are sometimes studied under
different names. For example, the papers Gentilini et al. (2013) and Elbas-
sioni et al. (2009) study the TSP with neighborhoods, and Gulczynski et
al. (2006) close enough TSP, both being closely related to GTSP. Here we
recall a selection of papers in which various algorithms, mainly heuristics
were used to solve the GTSP, as our list is not meant to be a compre-
hensive survey. Several approaches were considered for solving the GTSP:
a branch-and-cut algorithm for symmetric GTSP is described and analyzed
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in Fischetti et al. (1997). In Noon and Bean (1991), a Lagrangian-based
approach for asymmetric GTSP is given. Genetic algorithms were used in
Snyder and Daskin (2006), and in Silberholz and Golden (2007). Gutin
and Karapetyan (2009) proposed a reduction algorithm that can be used as
a preprocessing that decreases the size and consequently the computation
time of all solvers they consider. An efficient composite heuristic for the
Symmetric GTSP is proposed in Renaud and Boctor (1998). An applica-
tion of ant algorithms to GTSP is reported in Pintea et al. (2017). The
asymmetric case of GTSP was also studied in Laporte et al. (1987).

As the asymmetric generalized traveling salesman problem can be trans-
formed into a standard asymmetric traveling salesman problem with the
same number of cities (Noon and Bean, 1993), any ATSP solver can be
used for transformed GTSP. Furthermore, TSP is among the most studied
optimization problems (www 2), and it seems that the majority if not all
known heuristics were applied and tested, some of them also invented for
TSP. The reservoir of ideas that may be used to solve the GTPS it thus
enormous. However, while it is well known that competitive heuristics as
a rule employ specific properties of the problem or even of the subset of
the instances studied, we wish to recall that Occam’s razor principle applies
to design of heuristics as well (Zerovnik, 2015). This leads to conclusion
that development of heuristics and/or approximation algorithms suited for
specific variants of GTSP and/or specific domains may still be worth inves-
tigating.

3 Motivation: Flexible assembly with mobile robot

Numerous research activities in new technologies of Industry 4.0 go hand-
in-hand with the research of Industry 5.0 technologies which again puts the
human worker in the focus. Many tasks at smart industrial assembly work-
places require manual ergonomic workstations which must be smart, flexible
and agile. Also a worker must be digitalized, his activities must be simu-
lated in advance and optimally combined with the activities of a collabora-
tive robot. With this regard a huge variety of workers activities should be
taken into account (Nogueira et al., 2018; Borgss et al., 2019). When design-
ing ergonomic work conditions and jobs regarding the product all possible
information on products, job processes, tools, machines, tasks, limitations,
etc. should be considered (Leber et al., 2018). It is of utmost importance
to predict the single times required to complete individual work tasks by
the worker and also by the collaborative robot. This may be very helpful
when planning of necessary staff, material requirements and in prediction of
productivity (Rasmussen et al., 2018; Dianat et al., 2018; de Mattos et al.,
2018; Lanzottia et al., 2019).
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Due to increasing competition in the global market and to meet the need
for rapid changes in product variability, it is important to introduce self-
configurable and smart solutions, especially in manual assembly stations and
also within the entire process chain, to ensure more efficient, flexible, agile
and ergonomic performance of the manual assembly process. For example,
in Turk et al. (2020a), a smart assembly workstation is discussed that is
self-configurable according to the anthropometry of the individual worker,
the complexity of the assembly process, the product characteristics, and
the product structure. See also Dianat et al. (2018) and Tornstrom et al.
(2008).

In general, both ergonomic design of an assembly workstation and reli-
able estimation of execution time of basic manual assembly tasks (Turk et
al., 2020b) may not be straightforward. Below we assume that before con-
sidering practical instances of the optimization problems, the corresponding
study has been done and hence we are given the necessary data. Besides
optimization of the production speed, it is worth to consider some other
aspects of the production process. Therefore, the assumed available data
include, in addition to production times, also some quantities correspond-
ing to the manual assembly station itself and especially to the working
conditions and consequently the satisfaction and well-being of the worker.
With this regard, the working process should be structured according to er-
gonomic rules combined with the digitalization of the information flow and
Poka-yoke approach, including the low-cost intelligent automation. In our
formal models, we work with configurations of the assembly workstation.
The configuration is associated with (or, defined by) its features, including:

e height adaptation and positioning of the table,
e adaptation of the buffers position to achieve primary gripping position,
e pick-by-light approach,

e digitalized product structure, which should automaticaly change with
the new product or product variant,

e digitalized instructions on monitor or through augmented reality,

e setup of the chair,

e setup of the assembly nest, including its rotation and positioning abbility,
e the person working at the workstation,

e lighting with automatically adapted luminosity according to the workers
needs,
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e the content (material) of the boxes should be put optimally in accordance
with the product structure, assembly sequence and mass of the product
parts etc.

Note that if two workers may work using the same settings, there may
be a difference in their speed, so we consider these as two different config-
urations. Of course, for different workers often also the type of setup will
be different, depending on product structure, its variety and the number of
product parts. Clearly, in such cases we need to model the change when
only the workers are shifted without altering other settings.

4 The general model

Given a product P to be assembled, there may be a number of settings
of the workplace that are feasible for this particular task. Note that by
our definition, the configuration C' determines both the product P(C') and
the worker W(C') who is foreseen to work at this configuration. In other
words, given a product P there may be several workers that can do the job,
and for each of the workers there may be several feasible configurations.
Furthermore, with each configuration C' we may associate several features,
for example, we can define:

e T(C), the time needed for worker W (C') to complete the task related to
product P(C);

e R(C), the reliability of the operation performed at configuration C', which
can in turn be defined as the proportion of products of poor quality, or
by some other measure;

e S(C), a parameter (here called suitability) when person W (C') assem-
bles product P and the workplace is at configuration C, which can be
given either as a number, a vector, or even as an element of a set, e.g.
{excellent, good, poor, forbidden}; for example, ‘poor’ may mean that it
is likely that working in this configuration for a longer period is a health
hazard for the worker.

Clearly, we can define a complete graph where the vertices are the
configurations and the weights are defined as follows. Given two config-
urations, C; and C}, denote the time needed to switch from C; to C; by
c(C;,Cj) = c(i,7). Note that we may have c(i, j) # c(j, ) hence the asym-
metric version of the problem. Note that instead of time, the weights ¢(i, )
on directed edge may have a more general meaning, the cost of operation.

Assume we need to complete the order that is a list of tuples (product,
quantity), c.f. (P, ny1),(Pa, n2), ... (Pg, ng). Given a set of available config-
urations, assuming that the set includes at least one feasible configuration
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for each of the products, the task is to define the order of production that
takes minimal time (or, optimizes some other criteria).

With each product, we can associate several configurations, i.e. all C
with P(C') = P. The set of all configurations is thus naturally partitioned
into the sets that correspond to the products.

Formally, the general problem is defined as follows:

GENERIC ASSEMBLY WORKPLACE PLAN, AWP

Input: A directed graph G = (V, A) with weighting functions c :
E— €& f:V—V. An order of products and quantities
{(P1,n1), (P2,n2),...,(Pmn,nm)}, where each product P;
is associated with a set of configurations V; # (). This
gives the partition {Vi, V5, ..., Vi, }, where V;NV; = 0 for
all ¢ # j, and U™, V;.

Question: Find a tour in G that contains exactly one vertex from
each set V; such that the objective function is optimal.

Note that the weighting functions c and f are very general here. The edge
weighting function ¢ will in most cases map to £ = Ry. The weights of ver-
tices (configurations) may also be simply production times, i.e. f : V — Ry.
In many cases, f may model more features of the configuration, for example
f(C) = (T(C),R(C), 5(C)).

Below we discuss and define a number of more specific problems related
to more specific models. To this aim, we will have to elaborate:

e necessarily, the objective function(s) and

e additional assumptions and/or limitations on the instances.

Objective functions

Let us start with a model where we only minimize time, and consider first
a rather general case. Denote by Cy; the configuration that follows the
configuration C; in the tour w. Hence, in general, the production time of
a product P; depends on the configuration C'(P;) € V; and the quantity n;,
and the objective function is thus:

T(w) = 3 (T(C(R),m:) + £(Ci Cuii))) (1)

First simplification may be to assume that the quantities of each product are
low enough so that they can be made without interruption, and consequently
the time needed depends linearly on the quantities:

T(w) =Y (mT(C(P,)) + f(Ci, Cui)) - (2)

%
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If we add another assumption, namely that the production time does not
depend on the configuration, then the first term does not depend on the
tour, and we have the objective function:

T(w) = 3 f(Cis Cu) 3)

Observe that (3) implies AW P under the last assumption is equivalent to
GTSP. In other words:

Theorem 4.1 Problem AWP is a generalization of GTSP, and is NP-hard.

Multicriterial optimization

As already indicated before, in modelling the assembly workplace it is nat-
ural to consider other criteria besides time only. The criteria (1)-(3) may
be supplemented by e.g. reliability:

R(w) = > (R(C(P),ni)). (4)
or/and suitability (ergonomicity):

S(w) =Y (S(C(P),m)), ()

i

to obtain a multicriterial optimization problem with objective function:
(T(w), R(w), S(w)) -

Stochastic optimization

Until now, we have assumed that we are given a fixed order of products and
quantities {(Py,n1), (P2,n2),...,(Pmn,;nm)}. In modern times, industrial
production is largely shifted from mass production to small, often custom
designed series, and to production on demand for a known end customer.
Thus it is important to consider the versions of optimization problems that
are stochastic. Here we discuss the situation where we have, instead of
a fixed order, a set of likely orders, or pre-orders, that are to be confirmed or
altered ‘just before production’. We are interested in computing an a priori
plan of production that will be optimal on average. In other words, given
probabilities of orders in the provisional order, we wish to plan an a priori
plan of production that will have minimal expected cost. For simplicity,
assume that we only wish to minimize time.

First, recall the probabilistic traveling salesman problem (PTSP) (Jail-
let, 1988) that generalizes the TSP aiming to find an a priori tour that
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has minimal expected length. The cities that need not be visited are not
skipped, while the other cities are visited in the order that is defined by the
a priori solution. PTSP was among the first stochastic versions of problems
in combinatorial optimization.

Similarly, AWP with general objective function (1) can be generalized
to probabilistic AWP. The goal is to find an a priori tour that visits all
clusters that are present in the realization of the order, and has minimal
expected cost. We assume that probabilities of each pair (P;, n;) are known.
This may be possible to estimate, for example, when we work for known
customers.

Formally, the stochastic version of the problem can be defined as fol-
lows:

PROBABILISTIC ASSEMBLY WORKPLACE PLAN, PAWP

Input: A directed graph G = (V, A) with weighting functions
c: E— & f:V — V. An order of products and
quantities {(Py,n1), (P2, n2),...,(Pn,nm)}, with proba-
bilties p; giving the probability that the i-th order will be
confirmed, and where each product P; is associated with
a set of configurations V; # (). This gives the partition
{Vi,Va,...,Vin}, where V;NV; = 0 for all i # j, and
U Vi

Question: Find a tour in G that contains exactly one vertex from
each set V; such that the expected weight of the tour is
mimimal.

5 Conclusions and future work

In this short note, we have provided a new application of the generalized
traveling salesman. The practical problem, various models of mixed assem-
bly workstation, has motivated definition of several optimization problems
that generalize the GTSP. The contribution of this paper is the definition
of the models that are novel to the best of our knowledge.

This is the first step in the research that will be continued along several
avenues. On one hand, we are going to gather instances from design of par-
ticular workstations in real industrial environment thus bulding a database
of realistic instances. On the other hand, we are going to study heuristics
for the general optimization problem and its specific variants. The heuris-
tics that we are going to start with is the remove and reinsert heuristics
(Zerovnik, 1995; Brest and Zerovnik, 1999, 2005; Pesek et al., 2007; Zupan
et al., 2016). Basically the same idea appears, under a different name, in
Lahyani et al. (2017). This heuristics is very simple in its basic version,
which means that it can be easily generalized and/or adapted to similar
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problems. In short, remove and reinsert heuristics is a multistart local
search, more precisely: iterative improvement, type heuristics. After con-
structing an initial tour, a series of small perturbations are made that are
accepted if the objective function is improved. Both the tour construction
and the perturbations are based on the basic procedure that inserts a node
into the existing tour that traverses the active nodes. When constructing
the tour, a small subset of nodes is activated at first and an optimal tour is
found. Then, the inactive nodes are activated in random order and inserted.
Perturbation starts with a selection of active nodes that are unactivated,
and then again reinserted in random order. For details, we refer to the
previous studies.

In particular, in the past, remove and reinsert heuristics was tested both
on probabilistic TSP (Zerovnik, 1995) and on asymmetric TSP (Brest and
Zerovnik, 1999, 2005), and has proved very competitive.

References

Arora S., Lund C., Motwani R., Sudan M., Szegedy M. (1992), Proof Verification and Hardness of
Approzimation Problems, Proceedings 33rd Annual Symposium on Foundations of Computer
Science, 14-23.

Borgss S.P., La Delfa N.J., Dickerson C.R. (2019), An Evaluation of Off-axis Manual Forces and
Upper Extremity Joint Moments during Unilateral Pushing and Pulling Ezxertions, Advances
in Production Engineering & Management, 13(1), 107-117.

Brest J., Zerovnik J. (1999), An Approzimation Algorithm for the Asymmetric Traveling Sales-
man Problem, Ricerca Operativa, 28, 59-67.

Brest J., Zerovnik J. (2005), A Heuristic for the Asymmetric Traveling Salesman Problem,
Proceedings of the 6th Metaheuristics International Conference (MIC ’05), Vienna, Austria,
145-150.

Christofides N. (1976), Worst-case Analysis of a New Heuristic for the Travelling Salesman Prob-
lem, Technical Report 388, Graduate School of Industrial Administration, Carnegie-Mellon
University, Pittsburgh, PA.

de Mattos D.L., Netob R.A., Merinoa E.A.D, Forcellini F.A. (2018), Simulating the Influence of
Physical Overload on Assembly Line Performance: A Case Study in an Automotive Electrical
Component Plant, Applied Ergonomics, 79, 107-121.

Dianat I., Molenbroek J., Castellucci H.I. (2018), A Review of the Methodology and Applications
of Anthropometry in Ergonomics and Product Design, Ergonomics, 61(12), 1696-1720.

Elbassioni K., Fishkin A., Sitters R. (2009), Approzimation Algorithms for Euclidean Traveling
Salesman Problem with Discrete and Continuous Neighbourhoods, Int. J. Comput. Geom.
Appl., 19, 173-193.

Fischetti M., Gonzalez J.J.S., Toth P. (1997), A Branch-and-cut Algorithm for the Symmetric
Generalized Traveling Salesman Problem, Oper. Res., 45(3), 378-394.

Gentilini 1., Margot F., Shimada K. (2013), The Travelling Salesman Problem with Neighbour-
hoods: MINLP Solution, Optimization Methods and Software, 28(2), 364-378.

Gulezynski D.J., Heath J.W., Price C.C. (2006), The Close Enough Traveling Salesman Problem:
A Discussion of Several Heuristics, Perspectives in Operations Research, 36, 271-283.

Gutin G., Karapetyan D. (2009), Generalized Traveling Salesman Problem Reduction Algorithms,
Algorithmic Operations Research, 4(2), 144-154.

Helsgaun K. (2015), Solving the Equality Generalized Traveling Salesman Problem Using the
Lin-Kernighan-Helsgaun Algorithm, Math. Prog. Comp., 7, 269-287.

Jaillet P. (1988), A Priori Solution of a Traveling Salesman Problem in which a Random Subset
of the Customers Are Visited, Operation Research, 36, 929-936.



A New Application of the Generalized Traveling Salesman Problem... 163

Lahyani R., Khemakhem M., Semet F. (2017), A Unified Matheuristic for Solving Multicon-
strained Traveling Salesman Problems with Profits, EURO Journal on Computational Opti-
mization, 5(3), 393-422.

Lanzottia A., Vanacorea A., Taralloa A., Nathan-Robertsb D., Coccoresec D., Minopolia V., Car-
bonea F., d’Angelod R., Grassoe C., Di Gironimoa G., Papaa S. (2019), Interactive Tools for
Safety 4.0: Virtual Ergonomics and Serious Games in Real Working Contexts, Ergonomics,
63(3), 324-333.

Laporte G., Asef-Vaziri A., Sriskandarajah C. (1996), Some Applications of the Generalized Trav-
elling Salesman Problem, The Journal of the Operational Research Society, 47(12), 1461-1467.

Laporte G., Mercure H., Nobert Y. (1987), Generalized Travelling Salesman Problem Through
n sets of Nodes: The Asymmetrical Case, Discrete Applied Mathematics, 18(2), 185-197.

Leber M., Basti¢ M., Moody L., Schmidt Krajnc M. (2018), A Study of the Impact of Ergonom-
ically Designed Workplaces on Employee Productivity, Ergonomics, 62(1), 52-64.

Nobert Y., Laporte G. (1983), Generalized Travelling Salesman Problem through n sets of Nodes:
An Integer Programming Approach, INFOR Inf. Syst. Oper. Res., 21(1), 61-75.

Nogueira H.C., Locks F., Barbieri D.F., Oliveira A.B. (2018), How Does the Biomechanical Ez-
posure of the Upper Body in Manual Box Handling Differ from Exposure in Other Tasks in
the Real Industrial Context? International Journal of Industrial Ergonomics, 68, 8—14.

Noon C.E., Bean J.C. (1991), A Lagrangian Based Approach for the Asymmetric Generalized
Traveling Salesman Problem, Oper. Res., 39(4), 623-632.

Noon C.E., Bean J.C. (1993), An Efficient Transformation of the Generalized Traveling Salesman
Problem, INFOR: Information Systems and Operational Research, 31(1), 39-44.

Pesek 1., Schaerf A., Zerovnik J. (2007), Hybrid Local Search Techniques for the Resource-
constrained Project Scheduling Problem, Lecture Notes in Computer Science, 4771, 57—68.
Pintea C.M., Pop P.C., Chira C. (2017), The Generalized Traveling Salesman Problem Solved

with Ant Algorithms, Complex Adaptive Systems Modeling, 5(8), 1-9.

Rasmussen C.D.N., Hojberg H., Bengtsen E., Jorgensen M.B. (2018), Identifying Knowledge Gaps
between Practice and Research for Implementation Components of Sustainable Interventions
to Improve the Working Environment - A Rapid Review, Applied Ergonomics, 67, 178-192.

Renaud J., Boctor F.F. (1998), An Efficient Composite Heuristic for the Symmetric Generalized
Traveling Salesman Problem, Eur. J. Oper. Res., 108(3), 571-584.

Sahni S., Gonzalez T. (1976), P-complete Approximation Problems, J. Assoc. Comput. Mach.,
23, 555-565.

Silberholz J., Golden B. (2007), The Generalized Traveling Salesman Problem: A New Genetic
Algorithm Approach, Springer US, Boston, MA, 165-181.

Snyder L.V., Daskin M.S. (2006), A Random-key Genetic Algorithm for the Generalized Traveling
Salesman Problem, Eur. J. Oper. Res., 174(1), 38-53.

Svensson O., Tarnawski J., Végh L.A. (2020), A Constant-factor Approzimation Algorithm for
the Asymmetric Traveling Salesman Problem, JACM, 67(6), 37-53.

Tornstrom L., Amprazis J., Christmansson M., Eklund J. (2008), A Corporate Workplace Model
for Ergonomic Assessments and Improvements, Appl. Ergon., 39(2), 219-228.

Turk M., Pipan M., Simi¢ M., Herakovi¢ N. (2020a), A Smart Algorithm for Personalizing the
Workstation in the Assembly Process, Applied Sciences, 10(23), 1-19.

Turk M., Pipan M., Simi¢ M., Herakovi¢ N. (2020b), Simulation-based Time Evaluation of Basic
Manual Assembly Tasks, Advances in Production Engineering & Management, 15(3), 331-344.

Zerovnik J. (1995), A Heuristics for the Probabilistic Traveling Salesman Problem, Proceedings,
Symposium on Operation Research ’95, Portoro, Slovenia, 165—-172.

Zerovnik J. (2015), Heuristics for NP-hard Optimization Problems Simpler Is Better?!? Logistics
& Sustainable Transport, 6(1), 1-10.

Zupan H., Herakovi¢ N., Zerovnik J. (2016), A Heuristic for the Job Shop Scheduling Problem,
Bioinspired Optimization Methods and Their Applications: Proceedings of the Seventh Inter-
national Conference on Bioinspired Optimization Methods and their Applications BIOMA
2016, 187-198.

(www 1) The set traveling salesman problem. https://en.wikipedia.org/wiki/Set_TSP_problem
(accessed: 11.03.2021).

(www 2) Travelling salesman problem. https://en.wikipedia.org/wiki/Travelling_salesman_problem
(accessed: 19.02.2020).



