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Abstract 
 

Time is a key variable in the field of economics and finance. However, 

most of the classic approaches to economic problems are static. In this pa-

per, we first review the existing literature on the use of multiobjective 

techniques to control dynamic systems within the area of economics and 

finance. We also tackle the question of which measure should we use to 

evaluate alternative solutions. To this end, we elaborate on the meaning 

added by the selection of a parameter in a family of distance functions 

used to evaluate alternative solutions. 
 

 

Keywords: time, dynamic systems, economics, distance function, review. 

 

1 Introduction 

 

Multiple criteria decision making (MCDM) problems are characterized by the 

presence of several conflicting objectives that are considered simultaneously. We 
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formulate each relevant aspect as an objective function and we use multiobjec-

tive optimization to find the best solutions. MCDM dates back to the works by 

Pareto at the end of the 19th century, but the field has grown very fast during the 

last decades. Some general works on MCDM include, but are not limited to,  

Yu (1985), Steuer (1986), Romero (1991), Ballestero and Romero (1998), Erhgott 

(2005), Jones and Tamiz (2010), and Zopounidis and Pardalos (eds., 2010). 

Within the context of MCDM, there is a group of problems in which time is  

a key variable in addition to the criteria under consideration. Time is particularly 

relevant in the field of economics and finance. However, most of the classic 

approaches to economic problems are static as in Ballestero and Romero (1998). 

In this paper, we focus on multiobjective techniques used to control dynamic 

systems. By dynamic multiobjective problems we mean multiperiod problems in 

which we want to optimize a set of objective functions over time. This definition 

includes problems in which we want to optimize the final or cumulative state of 

criteria, as in Caballero et al. (1998), but also the deviation of the trajectory of 

these criteria over time with respect to a given reference as described in 

Wierzbicki (1988). As a result, the first goal of this paper is to review relevant 

papers in multiobjective control within the fields of economics and finance. We 

restrict ourselves to economic and financial models because time series and mul-

tistage problems are ubiquituous in these areas. 

An important research question arises when dealing with multiobjective con-

trol problems: which measure should we use to evaluate alternative solutions? If 

we adhere to dynamic goal programming, we should minimize the sum of devia-

tions for each time step. However, other alternatives suggest the use of maxi-

mum absolute deviations or percentage deviations. Most of the alternatives are 

indeed special cases of the Minkowski distance function when a parameter is set 

to a particular integer value. As a second goal of the paper, we discuss the impli-

cations of selecting this parameter, extending the work by Gonzalez-Pachon and 

Romero (2016) in terms of the meaning added to the process. More precisely, we 

argue that there is an implicit selection of a decision-making principle when this 

parameter is set to a value. Finally, we reformulate multiobjective control prob-

lem as a constrained norm approximation problem. This reformulation presents 

the advantage of being convex and then solvable for any order of the norm (value  

of the parameter) using state-of-the-art convex optimization algorithms. 

Summarizing, the contributions of this paper are twofold: 

1. A review of relevant papers in multiobjective dynamic models in economics 

and finance. 

2. An analysis of the decision-making principles that underlie the selection of  

a parameter in the Minkowski distance function. 
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In addition to this introduction, the structure of this paper is as follows.  

Section 2 reviews a set of the most relevant papers in multiobjective dynamic 

control. Section 3 discusses the implications of selecting a parameter in multi-

objective dynamic control problems. Section 4 provides concluding remarks. 

 

2  A review of multiobjective dynamic models in economics  

and finance 
 

We can set the origins of a formal treatment of dynamic systems in the book by 

Bellman (1957). In this book, Bellman provided an introduction to the mathe-

matical theory of multistage decision processes and introduced the notion of 

dynamic programming (DP) to describe the subject matter. Other basic concepts, 

such as the Bellman equation to derive optimal policies in a recursive manner, 

paved the way to recent advances in economics. For instance, Sargent and 

Ljungqvist (2000) used several recursive methods to study macroeconomics 

while Hansen and Sargent (2013) studied recursive models of dynamic linear 

economies. Briefly, recursive models break a multistage problem into small 

pieces by forming a sequence of time-dependent problems. 

Following the definition by Kall and Wallace (1994), dynamic problems are 

characterized by stages or time steps indexed by t, the state xt at time t, the decision 

taken ut at time t, the transformation of the system from the current state and the 

decision taken to the next state, the return rt (xt, ut) obtained at time t, the set X of 

feasible decisions, and the overall objective function F which depends on the returns 

rt for the whole planning horizon T. The consideration of time as a key variable in  

a decision-making problem adds a new level of complexity to the problem. Indeed, 

Bellman (1957) refers to dynamic problems as multidimensional maximization 

problems. In this paper, we argue that a natural way to deal with multidimensional 

problems is to use multiple criteria decision making (MCDM). 

MCDM covers a wide range of techniques as described in Yu (1985), Steuer 

(1986), Romero (1991), Ballestero and Romero (1998), Erhgott (2005), Jones 

and Tamiz (2010), and Zopounidis and Pardalos (eds., 2010). Among them, Goal 

Programming (GP) initially proposed by Charnes and Cooper (1957) is one of 

the most widely used techniques. The introduction of dynamic features into the 

problem led to the development of Dynamic Goal Programming (DGP). Yu and 

Leitmann (1974) considered a dynamic multiobjective decision problem in 

which the concepts of non-dominated solutions were extended to a dynamic 

context. The use of trajectories over the planning horizon that play the role of  

a reference signal for optimization purposes was proposed by Wierzbicki (1980; 

1988).  
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Daellenbach and de Kluyver (1980) introduced a multiobjective dynamic pro-

gramming (MODP) technique as an extension of dynamic programming concepts. 

Levary (1984) proposed a scalarization approach by means of GP. Later on, Li and 

Haimes (1989) highlighted the development of the research area and reviewed both 

the concepts and the works in relation to theory and practice of MODP. On the other 

hand, Opricovic (1993) developed a compromise programming method (Zeleny, 

1973) by minimizing the distance to the ideal solution within a dynamic context and 

with application to water reservoir management. 

In the proceedings of two multiple criteria decision-making conferences, 

Trzaskalik (1997a; 1997b) discussed several aspects, such as monotonicity and 

separability in a multiple criteria context. Caballero et al. (1998) described an 

approach with dynamic target values to control not only the final values of the 

objective functions, but also their evolution along the planning horizon. Discrete 

dynamic programming with partially ordered criteria set was also considered by 

Trzaskalik and Sitarz (2002; 2007). More recently, Trzaskalik (2022) provided 

novel theoretical results on the possibility of finding the best multistage policies 

using Bellman’s optimality principle and the multicriteria bipolar method in 

which two sets of references points are determined. 

Zopounidis and Doumpos (2013) analyzed the importance of multicriteria deci-

sion systems for financial problems and reviewed the most relevant papers in two 

main areas of financial decision support, namely, portfolio selection and corporate 

performance evaluation. In what follows, we adopt a similar approach, but focusing 

only on the dynamic aspects of multicriteria decision-making models in finance. 

In what follows, we pay special attention to the dynamic portfolio selection 

problem. Probably the most studied problem in multicriteria financial decision- 

-making is the portfolio selection problem, due to the pioneering work by Mar-

kowitz (1952). However, the classical mean-variance model by Markowitz 

(1952) is a one-period model. This fact is critical because investors are usually 

concerned with cumulative results over a period of time and optimal decisions 

for a single period may be suboptimal in a multiperiod framework according to 

Estrada (2010). To overcome this limitation, Kelly (1956) in the context of gam-

bling and Latane (1959) in the context of investing proposed a multiperiod 

framework with cumulative results which is equivalent to the maximization of 

the geometric mean of returns. 

Mossin (1968) proposed an extension of the one-period model to a multiperiod 

framework following a dynamic programming approach and acknowledging first 

that Tobin (1965) appeared to be one of the first authors to make an attempt in this 

direction. What is most interesting in Mossin (1968) is the definition of the single- 

-period problem and the multiperiod problem that we reproduce here for clarity: 
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“By a single-period model is meant a theory of the following structure: 

The investor makes his portfolio decision at the beginning of a period and 

then waits until the end of the period when the rate of return on his portfo-

lio materializes. He cannot make any intermediate changes in the compo-

sition of his portfolio. The investor makes his decision with the objective 

of maximizing expected utility of wealth at the end of the period (final 

wealth)” (Mossin, 1968, p. 216). 
 

“By a multiperiod model is meant a theory of the following structure: 

The investor has determined a certain future point in time (his horizon) at 

which he plans to consume whatever wealth he has then available. He will 

still make his investment decisions with the objective of maximizing  

expected utility of wealth at that time. However, it is now assumed that 

the time between the present and his horizon can be subdivided into n  

periods (not necessarily of the same length), at the end of each of which 

return on the portfolio held during the period materializes and he can 

make a new decision on the composition of the portfolio to be held during 

the next period” (Mossin, 1968, p. 220). 
 

Instead of maximizing expected utility functions of the terminal wealth 

and/or multiperiod consumption, Li and Ng (2000) proposed an analytical meth-

od for the mean-variance formulation to find the multiperiod optimal portfolio 

policy. Zhou and Li (2000) also used the mean-variance formulation to select 

portfolios in a continuous framework using a stochastic linear-quadratic model. 

This line of work was later extended by Basak and Chabakauri (2010), Wang 

and Zhou (2020), Dai et al. (2021) and many others. 

More recently, Ben Abdelazziz et al. (2020) also proposed a stochastic  

dynamic multiobjective model for sustainable decision-making with applications 

in sustainable portfolio management with two stocks and two criteria (return and 

sustainability), and also in a workforce allocation problem in an economy with 

two sectors. 

A novel line of research has recently arised from the application of the multi-

objective dynamic techniques derived from the portfolio selection problem to the 

cash management problem by Salas-Molina, Pla-Santamaria and Rodriguez- 

-Aguilar (2018a), Salas-Molina, Pla-Santamaria and Rodríguez-Aguilar (2018b), 

Salas-Molina, Rodríguez-Aguilar and Pla-Santamaria (2018) and Salas-Molina 

(2019). In this area of research, Sethi and Thomson (1970; 2000) proposed  

an optimal control theory approach to the cash management problem that has 

been recently extended by Bhaya and Kaszkurewicz (2022) in a single-objective 

context. 
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3  Implications of parameter selection in multiobjective  

dynamic control models 
 

The main goal of this section is to provide a way to add meaning to multiobjec-

tive dynamic models by selecting a particular form of the objective function 

used for optimization purposes. To this end, we first formulate a general dynam-

ic goal program in which a parametric distance function is used to find the best 

solutions. Second, we analyze the implications of selecting a key parameter in 

this distance function in terms of the implicit decision-making principle derived 

from this choice. We illustrate the implications by means of the analysis of the 

most important cases. 

Let us start with the classical GP formulation by Charnes and Cooper (1957): 
 

 𝑚𝑖𝑛 ∑ (𝑤𝑖
+𝛿𝑖

+ + 𝑤𝑖
−𝛿𝑖

−)𝑞
𝑖=1   (1) 

subject to: 

 𝑔𝑖(𝒖, 𝒙) + 𝛿𝑖
− − 𝛿𝑖

+ = 𝑏𝑖  (2) 

 𝛿𝑖
−, 𝛿𝑖

+ ≥ 0  (3) 

 𝑢 ∈ 𝑆  (4) 

 

where we consider the positive 𝜹𝒊
+ and negative deviations 𝜹𝒊

− of q different 

goals achievements measured by 𝒈𝒊(𝒖, 𝒙) from targets 𝒃𝒊. Goal achievements 

depend on control actions in vector 𝒖 subject to some feasibility set S and states 

in vector 𝒙. 

By including time as a key variable in the previous GP formulation, we are 

dealing with a multiobjective control problem described as the minimization of 

deviations with respect to some dynamic targets or trajectories as proposed, for 

instance, by Wierzbicki (1988) and Caballero et al. (1998). We are dealing with  

a dynamic goal program (DGP): 
 

 min ∑ ∑ (𝑤𝑖
+𝛿𝑖𝑡

+ + 𝑤𝑖
−𝛿𝑖𝑡

−)𝑛
𝑡=1

𝑞
𝑖=1   (5) 

subject to: 

 𝑔𝑖𝑡(𝒖, 𝒙) + 𝛿𝑖𝑡
− − 𝛿𝑖𝑡

+ = 𝑏𝑖𝑡  (6) 

 𝛿𝑖𝑡
−, 𝛿𝑖𝑡

+ ≥ 0  (7) 

 𝒖 ∈ 𝑆  (8) 
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We can now move one step further by considering parameter p in the DGP 

formulation: 

 min [∑ ∑ (𝑤𝑖
+𝛿𝑖𝑡

+)𝑝𝑛
𝑡=1 + (𝑤𝑖

−𝛿𝑖𝑡
−)𝑝q

i=1 ]
1/p

  (9) 

 

subject again to equations (6), (7) and (8). The use of this parameter allows us to 

increase the degree of generality and, at the same time, to add meaning to the 

optimization process. We increase the degree of generality because we are able 

to consider not only linear deviations but also quadratic or maximum deviations 

as in the case of the Chebyshev variant of the classical linear GP formulation. 

Furtheremore, we are adding meaning to the optimization process, because by 

setting p, we are implicitly selecting a decision-making principle as we elaborate 

it next. 

 
 

3.1  Case p = 1, linear control and the principle of maximum efficiency 

 

For simplicity of notation, let us assume that all goal functions 𝒈𝒊(𝒖, 𝒙) are 

equally-weighted normalised non-negative linear functions of states in vector 𝒙 

and controls in vector 𝒖 that are subject to a given set of constraints. As a result, 

when we set 𝒑 = 𝟏 in equation (9), we are indeed minimizing the sum of abso-

lute deviations. And this minimization can be viewed as the application of the 

principle of maximum efficiency (Gonzalez-Pachon and Romero, 2016), because 

we focus on the sum of achievements disregarding particular deviations in fa-

vour of the sum (majority) of deviations. 
 

 min ∑ ∑ |𝑔𝑖𝑡(𝒖, 𝒙) − 𝑏𝑖𝑡|𝑛
𝑡=1

𝑞
𝑖=1   (10) 

 

In this case, we apply a multiobjective linear control of a set of q goals de-

termined by a set of dynamic targets (or trajectories) over a planning horizon of 

n time steps. 

 

3.2  Case p = ∞, minimax control and the principle of maximum fairness 

 

Now consider the case when we set 𝒑 = ∞ in equation (9). In this case, we min-

imize the maximum absolute deviations and this minimization can be viewed as 

the application of the principle of maximum fairness, because we focus on the 

worst observation as suggested by Gonzalez-Pachon and Romero (2016). 

 min [∑ ∑ |𝑔𝑖𝑡(𝒖, 𝒙) − 𝑏𝑖𝑡|∞𝑛
𝑡=1

𝑞
𝑖=1 ]

1/∞
→  min max(|𝑔𝑖𝑡(𝒖, 𝒙) − 𝑏𝑖𝑡|)  (11) 
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As a result, we apply a minimax control of a set of q goals determined by  

a set of dynamic targets (or trajectories) over a planning horizon of n time steps. 

The main implication here is that we are making decisions based on a single 

observation and this could be a problem for long time horizons. 

 

3.3  Case p = 2, quadratic control and the principle of balance 

 

When 𝒑 = 𝟐, we minimize the Euclidean distance between a reference signal 

(dynamic targets) and goal achievement. This minimization can be viewed as the 

application of the principle of balance because we are somewhere in between the 

cases 𝒑 = 𝟏 and 𝒑 = ∞. 

 min [∑ ∑ (𝑔𝑖𝑡(𝒖, 𝒙) − 𝑏𝑖𝑡)2𝑛
𝑡=1

𝑞
𝑖=1 ]

1/2
  (12) 

In this case, we apply a quadratic control of a set of q goals determined by  

a set of dynamic targets (or trajectories) over a planning horizon of n time steps. 

This approach represents a compromise between the principle of maximum effi-

ciency when 𝒑 = 𝟏 (the rule of the majority) and the principle of maximum fair-

ness when 𝒑 = ∞ (the rule of the most disadvantaged). 

 

3.4  Case p = 0, geometric control and the principle of limited compensability 

 

There is another case which is not so common in the literature but which leads to 

another important decision-making principle, namely, the principle of limited 

compensability. It can be shown that when 𝒑 = 𝟎, equation (9) is equivalent to 

considering the product of deviations. This approach implies the principle of 

limited compensability because we limit the offset between bad performance in 

one deviation with superior performance in other deviations: 

 [∑ ∑ |𝑔𝑖𝑡(𝒖, 𝒙) − 𝑏𝑖𝑡|𝑝𝑛
𝑡=1

𝑞
𝑖=1 ]

1/p
→ ∏ ∏ |𝑔𝑖𝑡(𝒖, 𝒙) − 𝑏𝑖𝑡|𝑛

𝑡=1
𝑞
𝑖=1   (13) 

As a result, we apply a geometric control of a set of q goals determined by  

a set of dynamic targets (or trajectories) over a planning horizon of n time steps. 

In this case, it is convenient to set the targets to the anti-ideal values and maxim-

ize the product of deviations with respect to these anti-ideal values, because 

otherwise, a single null deviation would lead to a minimum of the functional. 

 

3.5  Combination of decision-making principles 

 

As suggested by Gonzalez-Pachon and Romero (2016), we can use parameter 𝛌 

to produce a combination of decision-making principles. For instance, we can 
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consider a weighted combination of the principle of maximum efficiency and the 

principle of maximum fairness by minimizing the following functional: 

 𝜆ℒ1 + (1 − 𝜆)ℒ∞  (14) 

where 𝓛𝟏 and 𝓛∞ are, respectively, the parametric distance function in equation 

(9) when 𝒑 = 𝟏 and 𝒑 = ∞. We can extend this approach by considering any 

value of p in the range between zero and infinity as a potential representation of 

an additional decision-making principle. For instance, 𝒑 = 𝟑 can be viewed, at 

least in theory, as a new principle that lies between the principle of maximum 

efficiency and the principle of maximum fairness and one step further of the 

principle of balance represented by 𝒑 = 𝟐. 

 

3.6  Solving the problem 

 

It is obvious that when 𝑝 > 1, we are dealing with a non-linear problem that 

may result in difficulties to find the optimal policies. However, the minimization 

of a sum of deviations of q goals over planning horizon n raised to p and the 

whole sum raised to 1/p is equivalent to the minimization of the p-norm of  

a vector of dimension n · q: 

 min ‖[𝛿11, 𝛿12, … , 𝛿𝑛𝑞]‖
𝑝

 (15) 

If the minimization of the p-norm of a vector of deviations with respect to 

dynamic targets is subject to a set of linear constraints, we are dealing with  

a constrained norm approximation problem. Fortunately, this problem is convex 

and can be solved for any value of p using state-of-the-art convex optimization 

algorithms such as CVXPY within CPLEX or Gurobi (Boyd and Vandenberghe, 

2004). When we consider non-linear goals or constraints, we need to apply some 

heuristics to solve the problem. 

 

4  Concluding remarks 
 

The main research question addressed in this paper is whether we can add mean-

ing to the optimization process in multiobjective control. To this end, we consid-

er dynamic goal programming that usually deals with linear-quadratic control 

problems as a starting point to propose a more general approach. This approach 

is based on the selection of a parameter of the Minkowski distance function. 

Extending previous works on the subject, we show that the selection of this pa-

rameter implies the use of multiple decision-making principles that may help 

practitioners to motivate the use of objective functions to derive control policies. 
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We also highlight the point that any value of p can be interpreted as repre-

sentative of any decision-making principle. In order to deal with non-linearity of 

some of the decision-making principles, we suggest the use of constrained norm 

approximation methods to solve a general multiobjective control problem. 
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